Videolibrary
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
Video Library
Archive
Most viewed videos

Search
RSS
New in collection






Analysis days in Sirius
October 26, 2021 15:00–15:45, Sochi, online via Zoom at 14:00 CEST (=13:00 BST, =08:00 EDT)
 


Bianalytic functions of Hölder classes in Jordan domains with nonanalytic boundaries

M. Ya. Mazalov

National Research University "Moscow Power Engineering Institute" in Smolensk

Number of views:
This page:155

Abstract: We consider some boundary behavior effect for bianalytic functions related to the Dirichlet problem solvability. There exist such Jordan domains (even with infinitely smooth but not analytic boundaries) where non-constant bianalytic functions can tend to zero near the boundary only sufficiently slow. More precisely, we prove that for any $\alpha$ and $\beta$ such that $0<\alpha<\beta<1$, there exists a Jordan domain $D=D(\alpha,\beta)$ in which there are nontrivial solutions of the homogeneous Dirichlet problem for the class ${\rm Lip_{\alpha}}(\overline{D})$. At that, every boundary arc is a uniqueness set for functions bianalytic in $D$ and belonging to the class ${\rm Lip_{\beta}}(\ovz{D})$.

Language: English

Website: https://us02web.zoom.us/j/6250951776?pwd=aG5YNkJndWIxaGZoQlBxbWFOWHA3UT09

* ID: 625 095 1776, password: pade
 
  Contact us:
 Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024