Izvestiya: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya: Mathematics, 2021, Volume 85, Issue 3, Pages 421–456
DOI: https://doi.org/10.1070/IM9027
(Mi im9027)
 

This article is cited in 4 scientific papers (total in 4 papers)

Uniform approximation of functions by solutions of second order homogeneous strongly elliptic equations on compact sets in ${\mathbb{R}}^2$

M. Ya. Mazalovab

a National Research University "Moscow Power Engineering Institute" in Smolensk
b Saint Petersburg State University
References:
Abstract: We obtain a criterion for the uniform approximability of functions by solutions of second-order homogeneous strongly elliptic equations with constant complex coefficients on compact sets in $\mathbb{R}^2$ (the particular case of harmonic approximations is not distinguished).
The criterion is stated in terms of the unique (scalar) Harvey–Polking capacity related to the leading coefficient of a Laurent-type expansion (this capacity is trivial in the well-studied case of non-strongly elliptic equations).
The proof uses an improvement of Vitushkin's scheme, special geometric constructions, and methods of the theory of singular integrals. In view of the inhomogeneity of the fundamental solutions of strongly elliptic operators on $\mathbb{R}^2$, the problem considered is technically more difficult than the analogous problem for $\mathbb{R}^d$, $d>2$.
Keywords: uniform approximation, Vitushkin's scheme, capacities, homogeneous elliptic equations, Carleson measures.
Funding agency Grant number
Russian Science Foundation 17-11-01064
This paper was written with the support of the Russian Science Foundation (grant no. 17-11-01064).
Received: 08.06.2020
Revised: 30.05.2020
Russian version:
Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya, 2021, Volume 85, Issue 3, Pages 89–126
DOI: https://doi.org/10.4213/im9027
Bibliographic databases:
Document Type: Article
UDC: 517.518.8+517.956.2
Language: English
Original paper language: Russian
Citation: M. Ya. Mazalov, “Uniform approximation of functions by solutions of second order homogeneous strongly elliptic equations on compact sets in ${\mathbb{R}}^2$”, Izv. RAN. Ser. Mat., 85:3 (2021), 89–126; Izv. Math., 85:3 (2021), 421–456
Citation in format AMSBIB
\Bibitem{Maz21}
\by M.~Ya.~Mazalov
\paper Uniform approximation of functions
by~solutions of~second order homogeneous strongly elliptic equations on compact sets in~${\mathbb{R}}^2$
\jour Izv. RAN. Ser. Mat.
\yr 2021
\vol 85
\issue 3
\pages 89--126
\mathnet{http://mi.mathnet.ru/im9027}
\crossref{https://doi.org/10.4213/im9027}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2021IzMat..85..421M}
\transl
\jour Izv. Math.
\yr 2021
\vol 85
\issue 3
\pages 421--456
\crossref{https://doi.org/10.1070/IM9027}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000671433900001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85110754079}
Linking options:
  • https://www.mathnet.ru/eng/im9027
  • https://doi.org/10.1070/IM9027
  • https://www.mathnet.ru/eng/im/v85/i3/p89
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
    Statistics & downloads:
    Abstract page:358
    Russian version PDF:62
    English version PDF:22
    Russian version HTML:119
    References:39
    First page:9
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024