A. Yu. Trynin, “On one method for solving a mixed boundary value problem for a parabolic type equation using operators $\mathbb{AT}_{\lambda,j}$”, Izv. Vyssh. Uchebn. Zaved. Mat., 2024, no. 2, 59–80
2023
2.
A. Yu. Trynin, “A method for solution of a mixed boundary value problem for a hyperbolic type equation using the operators $\mathbb{AT}_{\lambda,j}$”, Izv. RAN. Ser. Mat., 87:6 (2023), 121–149; Izv. Math., 87:6 (2023), 1227–1254
3.
A. Yu. Trynin, “On the best polynomials approximation of segment functions”, Vladikavkaz. Mat. Zh., 25:1 (2023), 105–111
4.
A. Yu. Trynin, “On a method for solving a mixed boundary value problem for a parabolic equation using modified sinc-approximation operators”, Zh. Vychisl. Mat. Mat. Fiz., 63:7 (2023), 1156–1176; Comput. Math. Math. Phys., 63:7 (2023), 1264–1284
A. Yu. Trynin, “On the convergence of generalizations of the sinc approximations on the Privalov–Chanturia class”, Sib. Zh. Ind. Mat., 24:3 (2021), 122–137
2020
6.
A. Yu. Trynin, “On the uniform approximation of functions of bounded variation by Lagrange interpolation
polynomials with a matrix ${\mathcal L}_n^{(\alpha_n,\beta_n)}$ of Jacobi nodes”, Izv. RAN. Ser. Mat., 84:6 (2020), 197–222; Izv. Math., 84:6 (2020), 1224–1249
A. Yu. Trynin, E. D. Kireeva, “The principle of localization at the class of functions integrable in the Riemann for the processes of Lagrange–Sturm–Liouville”, Izv. Saratov Univ. Math. Mech. Inform., 20:1 (2020), 51–63
A. Yu. Trynin, “Convergence of the Lagrange–Sturm–Liouville processes for continuous functions of bounded variation”, Vladikavkaz. Mat. Zh., 20:4 (2018), 76–91
11.
A. Yu. Trynin, “Sufficient condition for convergence of Lagrange–Sturm–Liouville processes in terms of one-sided modulus of continuity”, Zh. Vychisl. Mat. Mat. Fiz., 58:11 (2018), 1780–1793; Comput. Math. Math. Phys., 58:11 (2018), 1716–1727
A. Yu. Trynin, “Necessary and sufficient conditions for the uniform on a segment sinc-approximations functions of bounded variation”, Izv. Saratov Univ. Math. Mech. Inform., 16:3 (2016), 288–298
A. Yu. Trynin, “Approximation of continuous on a segment functions with the help of linear combinations of sincs”, Izv. Vyssh. Uchebn. Zaved. Mat., 2016, no. 3, 72–81; Russian Math. (Iz. VUZ), 60:3 (2016), 63–71
A. Yu. Trynin, “On necessary and sufficient conditions for convergence of sinc-approximations”, Algebra i Analiz, 27:5 (2015), 170–194; St. Petersburg Math. J., 27:5 (2016), 825–840
A. Yu. Trynin, “On some properties of sinc approximations of continuous functions on the interval”, Ufimsk. Mat. Zh., 7:4 (2015), 116–132; Ufa Math. J., 7:4 (2015), 111–126
A. Yu. Trynin, “On operators of interpolation with respect to solutions of a Cauchy problem and Lagrange–Jacobi polynomials”, Izv. RAN. Ser. Mat., 75:6 (2011), 129–162; Izv. Math., 75:6 (2011), 1215–1248
A. Yu. Trynin, “On divergence of sinc-approximations everywhere on $(0,\pi)$”, Algebra i Analiz, 22:4 (2010), 232–256; St. Petersburg Math. J., 22:4 (2011), 683–701
A. Yu. Trynin, “A generalization of the Whittaker-Kotel'nikov-Shannon sampling theorem for continuous functions on a closed interval”, Mat. Sb., 200:11 (2009), 61–108; Sb. Math., 200:11 (2009), 1633–1679
A. Yu. Trynin, “A criterion for the uniform convergence of sinc-approximations on a segment”, Izv. Vyssh. Uchebn. Zaved. Mat., 2008, no. 6, 66–78; Russian Math. (Iz. VUZ), 52:6 (2008), 58–69
A. Yu. Trynin, “Tests for pointwise and uniform convergence of sinc approximations of continuous functions on a closed interval”, Mat. Sb., 198:10 (2007), 141–158; Sb. Math., 198:10 (2007), 1517–1534
A. Yu. Trynin, “Estimates for the Lebesgue functions and the Nevai formula for the $sinc$-approximations of continuous functions on an interval”, Sibirsk. Mat. Zh., 48:5 (2007), 1155–1166; Siberian Math. J., 48:5 (2007), 929–938
A. Yu. Trynin, “On the absence of stability of interpolation in eigenfunctions of the Sturm–Liouville problem”, Izv. Vyssh. Uchebn. Zaved. Mat., 2000, no. 9, 60–73; Russian Math. (Iz. VUZ), 44:9 (2000), 58–71