Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. Vyssh. Uchebn. Zaved. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika, 2018, Number 8, Pages 61–74 (Mi ivm9388)  

This article is cited in 4 scientific papers (total in 4 papers)

A criterion of convergence of Lagrange–Sturm–Liouville processes in terms of one-sided modulus of variation

A. Yu. Trynin

Saratov State University, 83 Astrakhanskaya str., Saratov, 410012 Russia
Full-text PDF (256 kB) Citations (4)
References:
Abstract: We obtain a criterion of uniform convergence inside the interval $(0, \pi)$ of interpolation processes constructed from eigenfunctions of the regular Sturm–Liouville problem with a continuous potential of bounded variation. The condition of the characteristic is formulated in terms of a one-sided modulus of variations of the function.
Keywords: sinc approximation, interpolation functions, uniform approximation, Lagrange–Sturm–Liouville processes.
Received: 09.06.2017
English version:
Russian Mathematics (Izvestiya VUZ. Matematika), 2018, Volume 62, Issue 8, Pages 51–63
DOI: https://doi.org/10.3103/S1066369X1808008X
Bibliographic databases:
Document Type: Article
UDC: 517.518
Language: Russian
Citation: A. Yu. Trynin, “A criterion of convergence of Lagrange–Sturm–Liouville processes in terms of one-sided modulus of variation”, Izv. Vyssh. Uchebn. Zaved. Mat., 2018, no. 8, 61–74; Russian Math. (Iz. VUZ), 62:8 (2018), 51–63
Citation in format AMSBIB
\Bibitem{Try18}
\by A.~Yu.~Trynin
\paper A criterion of convergence of Lagrange--Sturm--Liouville processes in terms of one-sided modulus of variation
\jour Izv. Vyssh. Uchebn. Zaved. Mat.
\yr 2018
\issue 8
\pages 61--74
\mathnet{http://mi.mathnet.ru/ivm9388}
\transl
\jour Russian Math. (Iz. VUZ)
\yr 2018
\vol 62
\issue 8
\pages 51--63
\crossref{https://doi.org/10.3103/S1066369X1808008X}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000439976800008}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85050640207}
Linking options:
  • https://www.mathnet.ru/eng/ivm9388
  • https://www.mathnet.ru/eng/ivm/y2018/i8/p61
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия высших учебных заведений. Математика Russian Mathematics (Izvestiya VUZ. Matematika)
    Statistics & downloads:
    Abstract page:272
    Full-text PDF :50
    References:32
    First page:3
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024