Processing math: 100%
Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. Vyssh. Uchebn. Zaved. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika, 2016, Number 3, Pages 72–81 (Mi ivm9094)  

This article is cited in 13 scientific papers (total in 13 papers)

Approximation of continuous on a segment functions with the help of linear combinations of sincs

A. Yu. Trynin

Chair of Applied Information Science, Saratov State University, 83 Astrakhanskaya str., Saratov, 410012 Russia
References:
Abstract: We investigate approximate properties of various operators, which are modifications of sinc-approximations of continuous functions on the segment.
Keywords: sinc-approximation, interpolation of functions, uniform approximation.
Funding agency Grant number
Russian Foundation for Basic Research 13-01-00102
Received: 11.07.2014
English version:
Russian Mathematics (Izvestiya VUZ. Matematika), 2016, Volume 60, Issue 3, Pages 63–71
DOI: https://doi.org/10.3103/S1066369X16030087
Bibliographic databases:
Document Type: Article
UDC: 517.518
Language: Russian
Citation: A. Yu. Trynin, “Approximation of continuous on a segment functions with the help of linear combinations of sincs”, Izv. Vyssh. Uchebn. Zaved. Mat., 2016, no. 3, 72–81; Russian Math. (Iz. VUZ), 60:3 (2016), 63–71
Citation in format AMSBIB
\Bibitem{Try16}
\by A.~Yu.~Trynin
\paper Approximation of continuous on a~segment functions with the help of linear combinations of sincs
\jour Izv. Vyssh. Uchebn. Zaved. Mat.
\yr 2016
\issue 3
\pages 72--81
\mathnet{http://mi.mathnet.ru/ivm9094}
\transl
\jour Russian Math. (Iz. VUZ)
\yr 2016
\vol 60
\issue 3
\pages 63--71
\crossref{https://doi.org/10.3103/S1066369X16030087}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000409282300008}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84959544381}
Linking options:
  • https://www.mathnet.ru/eng/ivm9094
  • https://www.mathnet.ru/eng/ivm/y2016/i3/p72
  • This publication is cited in the following 13 articles:
    1. V. N. Pasechnik, “Approximation of Continuous Functions by Classical Sincs and Values of Operators Cλ”, Comput. Math. and Math. Phys., 64:2 (2024), 206  crossref
    2. A. Yu. Trynin, “Lagrange–Sturm–Liouville Processes”, J Math Sci, 261:3 (2022), 455  crossref
    3. A. Yu. Trynin, “O skhodimosti obobschenii sink-approksimatsii na klasse Privalova–Chanturiya”, Sib. zhurn. industr. matem., 24:3 (2021), 122–137  mathnet  crossref
    4. A. Yu. Trynin, “Sufficient Conditions for Convergence of Generalized Sinc-Approximations on Segment”, J Math Sci, 255:4 (2021), 513  crossref
    5. A. Yu. Trynin, “On the Convergence of Generalizations of the Sinc Approximations on the Privalov–Chanturia Class”, J. Appl. Ind. Math., 15:3 (2021), 531  crossref
    6. A. Yu. Trynin, E. D. Kireeva, “Printsip lokalizatsii na klasse funktsii, integriruemykh po Rimanu, dlya protsessov Lagranzha–Shturma–Liuvillya”, Izv. Sarat. un-ta. Nov. ser. Ser.: Matematika. Mekhanika. Informatika, 20:1 (2020), 51–63  mathnet  crossref
    7. A. Yu. Trynin, “On the uniform approximation of functions of bounded variation by Lagrange interpolation polynomials with a matrix L(αn,βn)n of Jacobi nodes”, Izv. Math., 84:6 (2020), 1224–1249  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    8. A. Yu. Trynin, “Error Estimate for Uniform Approximation by Lagrange–Sturm–Liouville Processes”, J Math Sci, 247:6 (2020), 939  crossref
    9. A. Yu. Trynin, “Uniform convergence of Lagrange–Sturm–Liouville processes on one functional class”, Ufa Math. J., 10:2 (2018), 93–108  mathnet  crossref  isi
    10. A. Yu. Trynin, “Skhodimost protsessov Lagranzha–Shturma–Liuvillya dlya nepreryvnykh funktsii ogranichennoi variatsii”, Vladikavk. matem. zhurn., 20:4 (2018), 76–91  mathnet  crossref  elib
    11. A. Yu. Trynin, “Sufficient condition for convergence of Lagrange–Sturm–Liouville processes in terms of one-sided modulus of continuity”, Comput. Math. Math. Phys., 58:11 (2018), 1716–1727  mathnet  crossref  crossref  isi  elib
    12. M. Dyachenko, E. Nursultanov, S. Tikhonov, “Hardy-Littlewood and Pitt's inequalities for Hausdorff operators”, Bull. Sci. Math., 147 (2018), 40–57  crossref  mathscinet  zmath  isi  scopus
    13. A. Yu. Trynin, “Neobkhodimye i dostatochnye usloviya ravnomernoi na otrezke sink-approksimatsii funktsii ogranichennoi variatsii”, Izv. Sarat. un-ta. Nov. ser. Ser.: Matematika. Mekhanika. Informatika, 16:3 (2016), 288–298  mathnet  crossref  mathscinet  elib
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия высших учебных заведений. Математика Russian Mathematics (Izvestiya VUZ. Matematika)
    Statistics & downloads:
    Abstract page:263
    Full-text PDF :73
    References:53
    First page:16
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025