Abstract:
We investigate approximate properties of various operators, which are modifications of sinc-approximations of continuous functions on the segment.
Keywords:
sinc-approximation, interpolation of functions, uniform approximation.
Citation:
A. Yu. Trynin, “Approximation of continuous on a segment functions with the help of linear combinations of sincs”, Izv. Vyssh. Uchebn. Zaved. Mat., 2016, no. 3, 72–81; Russian Math. (Iz. VUZ), 60:3 (2016), 63–71
\Bibitem{Try16}
\by A.~Yu.~Trynin
\paper Approximation of continuous on a~segment functions with the help of linear combinations of sincs
\jour Izv. Vyssh. Uchebn. Zaved. Mat.
\yr 2016
\issue 3
\pages 72--81
\mathnet{http://mi.mathnet.ru/ivm9094}
\transl
\jour Russian Math. (Iz. VUZ)
\yr 2016
\vol 60
\issue 3
\pages 63--71
\crossref{https://doi.org/10.3103/S1066369X16030087}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000409282300008}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84959544381}
Linking options:
https://www.mathnet.ru/eng/ivm9094
https://www.mathnet.ru/eng/ivm/y2016/i3/p72
This publication is cited in the following 13 articles:
V. N. Pasechnik, “Approximation of Continuous Functions by Classical Sincs and Values of Operators Cλ”, Comput. Math. and Math. Phys., 64:2 (2024), 206
A. Yu. Trynin, “Lagrange–Sturm–Liouville Processes”, J Math Sci, 261:3 (2022), 455
A. Yu. Trynin, “O skhodimosti obobschenii sink-approksimatsii na klasse Privalova–Chanturiya”, Sib. zhurn. industr. matem., 24:3 (2021), 122–137
A. Yu. Trynin, “Sufficient Conditions for Convergence of Generalized Sinc-Approximations on Segment”, J Math Sci, 255:4 (2021), 513
A. Yu. Trynin, “On the Convergence of Generalizations of the Sinc Approximations on the Privalov–Chanturia Class”, J. Appl. Ind. Math., 15:3 (2021), 531
A. Yu. Trynin, E. D. Kireeva, “Printsip lokalizatsii na klasse funktsii, integriruemykh po Rimanu, dlya protsessov Lagranzha–Shturma–Liuvillya”, Izv. Sarat. un-ta. Nov. ser. Ser.: Matematika. Mekhanika. Informatika, 20:1 (2020), 51–63
A. Yu. Trynin, “On the uniform approximation of functions of bounded variation by Lagrange interpolation
polynomials with a matrix L(αn,βn)n of Jacobi nodes”, Izv. Math., 84:6 (2020), 1224–1249
A. Yu. Trynin, “Error Estimate for Uniform Approximation by Lagrange–Sturm–Liouville Processes”, J Math Sci, 247:6 (2020), 939
A. Yu. Trynin, “Uniform convergence of Lagrange–Sturm–Liouville processes on one functional class”, Ufa Math. J., 10:2 (2018), 93–108
A. Yu. Trynin, “Sufficient condition for convergence of Lagrange–Sturm–Liouville processes in terms of one-sided modulus of continuity”, Comput. Math. Math. Phys., 58:11 (2018), 1716–1727
M. Dyachenko, E. Nursultanov, S. Tikhonov, “Hardy-Littlewood and Pitt's inequalities for Hausdorff operators”, Bull. Sci. Math., 147 (2018), 40–57
A. Yu. Trynin, “Neobkhodimye i dostatochnye usloviya ravnomernoi na otrezke sink-approksimatsii funktsii ogranichennoi variatsii”, Izv. Sarat. un-ta. Nov. ser. Ser.: Matematika. Mekhanika. Informatika, 16:3 (2016), 288–298