Ufa Mathematical Journal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Ufimsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Ufa Mathematical Journal, 2018, Volume 10, Issue 2, Pages 93–108
DOI: https://doi.org/10.13108/2018-10-2-93
(Mi ufa430)
 

This article is cited in 4 scientific papers (total in 4 papers)

Uniform convergence of Lagrange–Sturm–Liouville processes on one functional class

A. Yu. Trynin

Saratov State University named after N.G. Chernyshevskii, Astrakhanskaya str. 83, 410012, Saratov, Russia
References:
Abstract: We establish the uniform convergence inside an arbitrary interval ${ (a, b) \subset [0, \pi] }$ for the values of the Lagrange–Sturm–Liouville operators for functions in a class defined by one-side moduli of continuity and oscillations. Outside this interval, the sequence of values of the Lagrange–Sturm–Liouville operators may diverge. The conditions describing this functional class contain a restriction only on the rate and magnitude of the increasing (or decreasing) of the continuous function. Each element of the proposed class can decrease (or, respectively, increase) arbitrarily fast. Popular sets of functions satisfying the Dini–Lipschitz condition or the Krylov criterion are proper subsets of this class, even if, under their conditions, the classical modulus of continuity and the variation are replaced by the one-sided ones. We obtain sharp upper bounds for functions and Lebesgue constants of the Lagrange–Sturm–Liouville processes. We establish sufficient conditions of the uniform convergence of the Lagrange–Sturm–Liouville processes in terms of the maximal absolute value of the sum and the maximal sum of the absolute values of the weighted first order differences. We prove the equiboundedness of the sequence of fundamental functions of Lagrange–Sturm–Liouville processes. Three new operators are proposed, which are modifications of the Lagrange–Sturm-Liouville operator and they allow one to approximate uniformly an arbitrary continuous function vanishing at the ends on the segment $ [0, \pi] $. All the results of the work remain valid if the one-sided moduli of continuity and oscillations are replaced by the classical ones.
Keywords: sinc approximation, interpolation functions, uniform approximation.
Received: 18.05.2017
Russian version:
Ufimskii Matematicheskii Zhurnal, 2018, Volume 10, Issue 2, Pages 93–108
Bibliographic databases:
Document Type: Article
UDC: 517.518.8
MSC: Primary 41A05, 41A58; Secondary 94A12
Language: English
Original paper language: Russian
Citation: A. Yu. Trynin, “Uniform convergence of Lagrange–Sturm–Liouville processes on one functional class”, Ufimsk. Mat. Zh., 10:2 (2018), 93–108; Ufa Math. J., 10:2 (2018), 93–108
Citation in format AMSBIB
\Bibitem{Try18}
\by A.~Yu.~Trynin
\paper Uniform convergence of Lagrange--Sturm--Liouville processes on one functional class
\jour Ufimsk. Mat. Zh.
\yr 2018
\vol 10
\issue 2
\pages 93--108
\mathnet{http://mi.mathnet.ru/ufa430}
\transl
\jour Ufa Math. J.
\yr 2018
\vol 10
\issue 2
\pages 93--108
\crossref{https://doi.org/10.13108/2018-10-2-93}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000438890500007}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85048514301}
Linking options:
  • https://www.mathnet.ru/eng/ufa430
  • https://doi.org/10.13108/2018-10-2-93
  • https://www.mathnet.ru/eng/ufa/v10/i2/p93
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Уфимский математический журнал
    Statistics & downloads:
    Abstract page:373
    Russian version PDF:138
    English version PDF:19
    References:39
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024