Sibirskii Matematicheskii Zhurnal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sibirsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Matematicheskii Zhurnal, 2007, Volume 48, Number 5, Pages 1155–1166 (Mi smj1798)  

This article is cited in 18 scientific papers (total in 18 papers)

Estimates for the Lebesgue functions and the Nevai formula for the $sinc$-approximations of continuous functions on an interval

A. Yu. Trynin

Saratov State University named after N. G. Chernyshevsky
References:
Abstract: We obtain some upper and lower estimates for the sequences of the Lebesgue functions and constants of the Whittaker operators
\begin{equation*} L_n(f,x)=\sum^n_{k=0}\frac{\sin(nx-k\pi)}{nx-k\pi}f\biggl(\frac{k\pi}n\biggr) \end{equation*}
for continuous functions. We give an analog of Nevai's formula for the Lagrange–Chebyshev and Lagrange–Laguerre interpolation polynomials for the operators under consideration. Its “local” version is established.
Keywords: approximation of continuous functions, Lagrange interpolation, uniform convergence.
Received: 30.01.2006
English version:
Siberian Mathematical Journal, 2007, Volume 48, Issue 5, Pages 929–938
DOI: https://doi.org/10.1007/s11202-007-0096-z
Bibliographic databases:
UDC: 517.5
Language: Russian
Citation: A. Yu. Trynin, “Estimates for the Lebesgue functions and the Nevai formula for the $sinc$-approximations of continuous functions on an interval”, Sibirsk. Mat. Zh., 48:5 (2007), 1155–1166; Siberian Math. J., 48:5 (2007), 929–938
Citation in format AMSBIB
\Bibitem{Try07}
\by A.~Yu.~Trynin
\paper Estimates for the Lebesgue functions and the Nevai formula for the $sinc$-approximations of continuous functions on an interval
\jour Sibirsk. Mat. Zh.
\yr 2007
\vol 48
\issue 5
\pages 1155--1166
\mathnet{http://mi.mathnet.ru/smj1798}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2364635}
\zmath{https://zbmath.org/?q=an:1164.41307}
\elib{https://elibrary.ru/item.asp?id=9516525}
\transl
\jour Siberian Math. J.
\yr 2007
\vol 48
\issue 5
\pages 929--938
\crossref{https://doi.org/10.1007/s11202-007-0096-z}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000250598700019}
\elib{https://elibrary.ru/item.asp?id=13549494}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-35148821763}
Linking options:
  • https://www.mathnet.ru/eng/smj1798
  • https://www.mathnet.ru/eng/smj/v48/i5/p1155
  • This publication is cited in the following 18 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Сибирский математический журнал Siberian Mathematical Journal
    Statistics & downloads:
    Abstract page:484
    Full-text PDF :183
    References:76
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024