Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. Saratov Univ. Math. Mech. Inform.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, 2020, Volume 20, Issue 1, Pages 51–63
DOI: https://doi.org/10.18500/1816-9791-2020-20-1-51-63
(Mi isu828)
 

This article is cited in 1 scientific paper (total in 1 paper)

Scientific Part
Mathematics

The principle of localization at the class of functions integrable in the Riemann for the processes of Lagrange–Sturm–Liouville

A. Yu. Trynin, E. D. Kireeva

Saratov State University, 83 Astrakhanskaya St., Saratov 410012, Russia
Full-text PDF (246 kB) Citations (1)
References:
Abstract: Let us say that the principle of localization holds at the class of functions $F$ at point $x_0 \in [0, \pi]$ for the Lagrange–Sturm–Liouville interpolation process $L_n^{SL}(f,x)$ if $\lim_{n \rightarrow \infty}\left|L_n^{SL}(f, x_0)-L_n^{SL}(g,x_0)\right|=0$ follows from the fact that the condition $f(x)=g(x)$ is met for any two functions f and g belonging to F in some neighborhood $O_\delta(x_0)$, $\delta>0$. It is proved that the principle of localization at the class of Riemann integrable functions holds for interpolation processes built on the eigenfunctions of the regular Sturm–Liouville problem with a continuous potential of bounded variation. It is established that the principle of localization at the class of continuous on the segment $[0, \pi]$ functions holds for interpolation processes built on the eigenfunctions of the regular Sturm–Liouville problem with an optional continuous potential of bounded variation. We consider the case of boundary conditions of the third kind, from which the boundary conditions of the first kind are removed. Approximative properties of Lagrange–Sturm–Liouville operators at point $x_0\in [0, \pi] $ in both cases depend solely on the values of the approximate function just in the neighborhood of this point $x_0\in [0, \pi]$.
Key words: interpolation process, eigenfunctions, function approximation, localization principle.
Received: 31.10.2018
Accepted: 15.12.2018
Bibliographic databases:
Document Type: Article
UDC: 517.518.8
Language: Russian
Citation: A. Yu. Trynin, E. D. Kireeva, “The principle of localization at the class of functions integrable in the Riemann for the processes of Lagrange–Sturm–Liouville”, Izv. Saratov Univ. Math. Mech. Inform., 20:1 (2020), 51–63
Citation in format AMSBIB
\Bibitem{TryKir20}
\by A.~Yu.~Trynin, E.~D.~Kireeva
\paper The principle of localization at the class of functions integrable in the Riemann for the processes of Lagrange--Sturm--Liouville
\jour Izv. Saratov Univ. Math. Mech. Inform.
\yr 2020
\vol 20
\issue 1
\pages 51--63
\mathnet{http://mi.mathnet.ru/isu828}
\crossref{https://doi.org/10.18500/1816-9791-2020-20-1-51-63}
Linking options:
  • https://www.mathnet.ru/eng/isu828
  • https://www.mathnet.ru/eng/isu/v20/i1/p51
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Саратовского университета. Новая серия. Серия Математика. Механика. Информатика
    Statistics & downloads:
    Abstract page:169
    Full-text PDF :79
    References:29
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024