Loading [MathJax]/jax/output/CommonHTML/jax.js
Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. Vyssh. Uchebn. Zaved. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika, 2008, Number 6, Pages 66–78 (Mi ivm1514)  

This article is cited in 24 scientific papers (total in 24 papers)

A criterion for the uniform convergence of sinc-approximations on a segment

A. Yu. Trynin

Saratov State University
References:
Abstract: In this paper we obtain a criterion for the uniform convergence inside the interval (0,π) of values of E. T. Whittaker operators
Ln(f,x)=nk=0sin(nxkπ)nxkπf(kπn)
for continuous functions. This criterion is similar to that of A. A. Privalov for the convergence of interpolation Lagrange–Chebyshev polynomials and trigonometric ones.
Keywords: cardinal function, sinc approximation, Lagrange interpolation, convergence; criterion of the uniform convergence, cardinal function, approximation, interpolation process.
Received: 13.02.2006
English version:
Russian Mathematics (Izvestiya VUZ. Matematika), 2008, Volume 52, Issue 6, Pages 58–69
DOI: https://doi.org/10.3103/S1066369X08060078
Bibliographic databases:
UDC: 517.518
Language: Russian
Citation: A. Yu. Trynin, “A criterion for the uniform convergence of sinc-approximations on a segment”, Izv. Vyssh. Uchebn. Zaved. Mat., 2008, no. 6, 66–78; Russian Math. (Iz. VUZ), 52:6 (2008), 58–69
Citation in format AMSBIB
\Bibitem{Try08}
\by A.~Yu.~Trynin
\paper A criterion for the uniform convergence of sinc-approximations on a segment
\jour Izv. Vyssh. Uchebn. Zaved. Mat.
\yr 2008
\issue 6
\pages 66--78
\mathnet{http://mi.mathnet.ru/ivm1514}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2467410}
\zmath{https://zbmath.org/?q=an:05363439}
\elib{https://elibrary.ru/item.asp?id=11018368}
\transl
\jour Russian Math. (Iz. VUZ)
\yr 2008
\vol 52
\issue 6
\pages 58--69
\crossref{https://doi.org/10.3103/S1066369X08060078}
Linking options:
  • https://www.mathnet.ru/eng/ivm1514
  • https://www.mathnet.ru/eng/ivm/y2008/i6/p66
  • This publication is cited in the following 24 articles:
    1. V. N. Pasechnik, “Approximation of Continuous Functions by Classical Sincs and Values of Operators Cλ”, Comput. Math. and Math. Phys., 64:2 (2024), 206  crossref
    2. A. Yu. Trynin, “On a method for solving a mixed boundary value problem for a parabolic equation using modified sinc-approximation operators”, Comput. Math. Math. Phys., 63:7 (2023), 1264–1284  mathnet  mathnet  crossref  crossref
    3. A. Yu. Trynin, “A Summation Method for Trigonometric Fourier Series Based on Sinc-Approximations”, J Math Sci, 270:6 (2023), 842  crossref
    4. A. Yu. Trynin, “Lagrange–Sturm–Liouville Processes”, J Math Sci, 261:3 (2022), 455  crossref
    5. A. Yu. Trynin, “Sufficient Conditions for Convergence of Generalized Sinc-Approximations on Segment”, J Math Sci, 255:4 (2021), 513  crossref
    6. A. Yu. Trynin, “On the uniform approximation of functions of bounded variation by Lagrange interpolation polynomials with a matrix L(αn,βn)n of Jacobi nodes”, Izv. Math., 84:6 (2020), 1224–1249  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    7. A. Yu. Trynin, “Error Estimate for Uniform Approximation by Lagrange–Sturm–Liouville Processes”, J Math Sci, 247:6 (2020), 939  crossref
    8. A. Yu. Trynin, “Uniform convergence of Lagrange–Sturm–Liouville processes on one functional class”, Ufa Math. J., 10:2 (2018), 93–108  mathnet  crossref  isi
    9. A. Yu. Trynin, “Skhodimost protsessov Lagranzha–Shturma–Liuvillya dlya nepreryvnykh funktsii ogranichennoi variatsii”, Vladikavk. matem. zhurn., 20:4 (2018), 76–91  mathnet  crossref  elib
    10. A. Yu. Trynin, “Sufficient condition for convergence of Lagrange–Sturm–Liouville processes in terms of one-sided modulus of continuity”, Comput. Math. Math. Phys., 58:11 (2018), 1716–1727  mathnet  crossref  crossref  isi  elib
    11. Mohsen A.A.K., “Accurate Function Sinc Interpolation and Derivative Estimations Over Finite Intervals”, J. Comput. Appl. Math., 324 (2017), 216–224  crossref  mathscinet  zmath  isi  scopus
    12. Coroianu L., Gal S.G., “L-P-Approximation By Truncated Max-Product Sampling Operators of Kantorovich-Type Based on Fejer Kernel”, J. Integral Equ. Appl., 29:2 (2017), 349–364  crossref  mathscinet  zmath  isi  scopus
    13. A. Yu. Trynin, “Approximation of continuous on a segment functions with the help of linear combinations of sincs”, Russian Math. (Iz. VUZ), 60:3 (2016), 63–71  mathnet  crossref  isi
    14. Coroianu L., Gal S.G., “Localization Results For the Non-Truncated Max-Product Sampling Operators Based on Fejer and Sinc-Type Kernels”, Demonstr. Math., 49:1 (2016), 38–49  crossref  mathscinet  zmath  isi
    15. A. Yu. Trynin, “Neobkhodimye i dostatochnye usloviya ravnomernoi na otrezke sink-approksimatsii funktsii ogranichennoi variatsii”, Izv. Sarat. un-ta. Nov. ser. Ser.: Matematika. Mekhanika. Informatika, 16:3 (2016), 288–298  mathnet  crossref  mathscinet  elib
    16. A. Ya. Umakhanov, I. I. Sharapudinov, “Interpolyatsiya funktsii summami Uittekera i ikh modifikatsiyami: usloviya ravnomernoi skhodimosti”, Vladikavk. matem. zhurn., 18:4 (2016), 61–70  mathnet
    17. A. Yu. Trynin, “On necessary and sufficient conditions for convergence of sinc-approximations”, St. Petersburg Math. J., 27:5 (2016), 825–840  mathnet  crossref  mathscinet  isi  elib
    18. A. Yu. Trynin, “On some properties of sinc approximations of continuous functions on the interval”, Ufa Math. J., 7:4 (2015), 111–126  mathnet  crossref  isi  elib
    19. Lucian Coroianu, Sorin G. Gal, “Saturation Results for the Truncated Max-Product Sampling Operators Based on Sinc and Fejér-Type Kernels”, STSIP, 11:1 (2012), 113  crossref
    20. A. Yu. Trynin, “On operators of interpolation with respect to solutions of a Cauchy problem and Lagrange–Jacobi polynomials”, Izv. Math., 75:6 (2011), 1215–1248  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib  elib
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия высших учебных заведений. Математика Russian Mathematics (Izvestiya VUZ. Matematika)
    Statistics & downloads:
    Abstract page:586
    Full-text PDF :153
    References:81
    First page:2
     
      Contact us:
    math-net2025_04@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025