Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2009, Volume 200, Issue 11, Pages 1633–1679
DOI: https://doi.org/10.1070/SM2009v200n11ABEH004054
(Mi sm4502)
 

This article is cited in 26 scientific papers (total in 26 papers)

A generalization of the Whittaker-Kotel'nikov-Shannon sampling theorem for continuous functions on a closed interval

A. Yu. Trynin

Saratov State University named after N. G. Chernyshevsky
References:
Abstract: Classes of functions in the space of continuous functions $f$ defined on the interval $[0,\pi]$ and vanishing at its end-points are described for which there is pointwise and approximate uniform convergence of Lagrange-type operators
$$ S_\lambda(f,x)=\sum_{k=0}^n\frac{y(x,\lambda)}{y'(x_{k,\lambda}) (x-x_{k,\lambda})}f(x_{k,\lambda}). $$
These operators involve the solutions $y(x,\lambda)$ of the Cauchy problem for the equation
$$ y''+(\lambda-q_\lambda(x))y=0 $$
where $q_\lambda\in V_{\rho_\lambda}[0,\pi]$ (here $V_{\rho_\lambda}[0,\pi]$ is the ball of radius $\rho_\lambda=o(\sqrt\lambda/\ln\lambda)$ in the space of functions of bounded variation vanishing at the origin, and $y(x_{k,\lambda})=0$). Several modifications of this operator are proposed, which allow an arbitrary continuous function on $[0,\pi]$ to be approximated uniformly.
Bibliography: 40 titles.
Keywords: sampling theorem, interpolation, uniform convergence, sinc approximation.
Received: 25.12.2007 and 03.08.2009
Bibliographic databases:
UDC: 517.518.85
MSC: 41A05, 41A35
Language: English
Original paper language: Russian
Citation: A. Yu. Trynin, “A generalization of the Whittaker-Kotel'nikov-Shannon sampling theorem for continuous functions on a closed interval”, Sb. Math., 200:11 (2009), 1633–1679
Citation in format AMSBIB
\Bibitem{Try09}
\by A.~Yu.~Trynin
\paper A generalization of the Whittaker-Kotel'nikov-Shannon sampling theorem for continuous functions on a~closed interval
\jour Sb. Math.
\yr 2009
\vol 200
\issue 11
\pages 1633--1679
\mathnet{http://mi.mathnet.ru//eng/sm4502}
\crossref{https://doi.org/10.1070/SM2009v200n11ABEH004054}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2589998}
\zmath{https://zbmath.org/?q=an:1194.41012}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2009SbMat.200.1633T}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000275236600004}
\elib{https://elibrary.ru/item.asp?id=19066096}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-75649103182}
Linking options:
  • https://www.mathnet.ru/eng/sm4502
  • https://doi.org/10.1070/SM2009v200n11ABEH004054
  • https://www.mathnet.ru/eng/sm/v200/i11/p61
  • This publication is cited in the following 26 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:1134
    Russian version PDF:483
    English version PDF:61
    References:88
    First page:35
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024