01.01.02 (Differential equations, dynamical systems, and optimal control)
E-mail:
Keywords:
elliptic and parabolic equations; solvability of a boundary value problem; a priori estimate; boundary properties of solutions; embedding theorem; capacity; removable singularities of solutions; maximal function.
Subject:
The class of nondivergent elliptic equations of the second order with Wiener test regularity of a boundary point in terms of introduced function of ellipticity was described. This class ņontain equations with dicontinuous coefficients. The parabolic analog of Cordes condition guaranteeing unique solvability of the first boundary value problem for nondivergent parabolic equations of the second order in the Sobolev space $W^{2,1}_{2,0}$ was found (with I. T. Mamedov). Necessary and sufficient condition on a boundary for unique $L_p$–solvability of the Dirichlet problem together with the corresponding coercive estimate for divergent elliptic equations of the second order was obtained. The smoothness at a point for solutions of parabolic equations of the second order under minimal assumptions on coefficients was investigated. Inner and boundary properties for solutions of quasilinear elliptic equations for integrands $|\xi|^{p(x)}$ were studied. The Holder property for solutions of degenerate elliptic equations of the second order with a weight that is not satisfying neither Muckenhoupt condition nor double condition was proved (with V. V. Zhikov). Interesting feature of these equations is absent of Harnack inequality for positive solutions.
Biography
Graduated from department of applied mathematics of Azerbaijan Institute of Oil and Chemistry in 1979. Ph.D. thesis was defended in 1982. D.Sci thesis was defended in 1992.
Main publications:
Alkhutov Yu. A., Mamedov I. T. Pervaya kraevaya zadacha dlya nedivergentnykh parabolicheskikh uravnenii vtorogo poryadka s razryvnymi koeffitsientami // Matem. cbornik, 1986, 173(4), 477–500.
Yu. A. Alkhutov, G. A. Chechkin, “On the Boyarsky–Meyers estimate for the solution of the Dirichlet problem for a second-order linear elliptic equation with drift”, CMFD, 70:1 (2024), 1–14
2.
Yu. A. Alkhutov, G. A. Chechkin, “Multidimensional Zaremba problem for the $p(\,\cdot\,)$-laplace equation. A Boyarsky–Meyers estimate”, TMF, 218:1 (2024), 3–22; Theoret. and Math. Phys., 218:1 (2024), 1–18
Yu. A. Alkhutov, C. D. Apice, M. A. Kisatov, A. G. Chechkina, “On higher integrability of the gradient of solutions to the Zaremba problem for $p$-Laplace equation”, Dokl. RAN. Math. Inf. Proc. Upr., 512 (2023), 47–51; Dokl. Math., 108:1 (2023), 282–285
2022
4.
Yu. A. Alkhutov, A. G. Chechkina, “Many-dimensional Zaremba problem for an inhomogeneous $p$-Laplace equation”, Dokl. RAN. Math. Inf. Proc. Upr., 505 (2022), 37–41; Dokl. Math., 106:1 (2022), 243–246
Yu. A. Alkhutov, G. A. Chechkin, “Increased integrability of the gradient of the solution to the Zaremba problem for the Poisson equation”, Dokl. RAN. Math. Inf. Proc. Upr., 497 (2021), 3–6; Dokl. Math., 103:2 (2021), 69–71
Yu. A. Alkhutov, M. D. Surnachev, “Interior and boundary continuity of $p(x)$-harmonic functions”, Zap. Nauchn. Sem. POMI, 508 (2021), 7–38
2020
7.
Yu. A. Alkhutov, M. D. Surnachev, “Hölder Continuity and Harnack's Inequality for $p(x)$-Harmonic Functions”, Trudy Mat. Inst. Steklova, 308 (2020), 7–27; Proc. Steklov Inst. Math., 308 (2020), 1–21
Yu. A. Alkhutov, M. D. Surnachev, “Estimates of the fundamental solution for an elliptic equation in divergence form with drift”, Zap. Nauchn. Sem. POMI, 489 (2020), 7–35
Yu. A. Alkhutov, M. D. Surnachev, “Harnack inequality for the elliptic $p(x)$-Laplacian with a three-phase exponent $p(x)$”, Zh. Vychisl. Mat. Mat. Fiz., 60:8 (2020), 1329–1338; Comput. Math. Math. Phys., 60:8 (2020), 1284–1293
2019
10.
Yu. A. Alkhutov, M. D. Surnachev, “Behavior of solutions of the Dirichlet Problem for the $ p(x)$-Laplacian at a boundary point”, Algebra i Analiz, 31:2 (2019), 88–117; St. Petersburg Math. J., 31:2 (2019), 251–271
Yu. A. Alkhutov, M. D. Surnachev, “Harnack's inequality for the $p(x)$-Laplacian with a two-phase exponent $p(x)$”, Tr. Semim. im. I. G. Petrovskogo, 32 (2019), 8–56; J. Math. Sci. (N. Y.), 244:2 (2020), 116–147
Yu. A. Alkhutov, V. N. Denisov, “Necessary and sufficient condition for the stabilization of the solution of a mixed problem for nondivergence parabolic equations to zero”, Tr. Mosk. Mat. Obs., 75:2 (2014), 277–308; Trans. Moscow Math. Soc., 75 (2014), 233–258
Yu. A. Alkhutov, V. V. Zhikov, “Existence and uniqueness theorems for solutions of parabolic equations with a variable nonlinearity exponent”, Mat. Sb., 205:3 (2014), 3–14; Sb. Math., 205:3 (2014), 307–318
Yu. A. Alkhutov, “Hölder continuity of solutions of nondivergent degenerate second-order elliptic equations”, Tr. Semim. im. I. G. Petrovskogo, 29 (2013), 5–42; J. Math. Sci. (N. Y.), 197:2 (2014), 151–174
2012
15.
Yu. A. Alkhutov, E. A. Khrenova, “Harnack inequality for a class of second-order degenerate elliptic equations”, Trudy Mat. Inst. Steklova, 278 (2012), 7–15; Proc. Steklov Inst. Math., 278 (2012), 1–9
Yu. A. Alkhutov, V. V. Zhikov, “Hölder continuity of solutions of parabolic equations with variable nonlinearity exponent”, Tr. Semim. im. I. G. Petrovskogo, 28 (2011), 8–74; J. Math. Sci. (N. Y.), 179:3 (2011), 347–389
Yu. A. Alkhutov, V. V. Zhikov, “Existence theorems for solutions of parabolic equations with variable order of nonlinearity”, Trudy Mat. Inst. Steklova, 270 (2010), 21–32; Proc. Steklov Inst. Math., 270 (2010), 15–26
Yu. A. Alkhutov, A. N. Gordeev, “$L_p$-solubility of the Dirichlet problem for the heat operator”, Uspekhi Mat. Nauk, 64:1(385) (2009), 137–138; Russian Math. Surveys, 64:1 (2009), 131–133
2008
19.
Yu. A. Alkhutov, O. V. Krasheninnikova, “On the Continuity of Solutions to Elliptic Equations with Variable Order of Nonlinearity”, Trudy Mat. Inst. Steklova, 261 (2008), 7–15; Proc. Steklov Inst. Math., 261 (2008), 1–10
Yu. A. Alkhutov, O. V. Krasheninnikova, “Continuity at boundary points of solutions of quasilinear elliptic equations with a non-standard growth condition”, Izv. RAN. Ser. Mat., 68:6 (2004), 3–60; Izv. Math., 68:6 (2004), 1063–1117
Yu. A. Alkhutov, “$L_p$-solubility of the Dirichlet problem for the heat equation
in non-cylindrical domains”, Mat. Sb., 193:9 (2002), 3–40; Sb. Math., 193:9 (2002), 1243–1279
Yu. A. Alkhutov, V. V. Zhikov, “The leading term of the spectral asymptotics for the Kohn–Laplace operator in a bounded domain”, Mat. Zametki, 64:4 (1998), 493–505; Math. Notes, 64:4 (1998), 429–439
Yu. A. Alkhutov, “$L_p$-estimates of the solution of the Dirichlet problem for second-order elliptic equations”, Mat. Sb., 189:1 (1998), 3–20; Sb. Math., 189:1 (1998), 1–17
Yu. A. Alkhutov, “The Harnack inequality and the Hölder property of solutions of nonlinear elliptic equations with a nonstandard growth condition”, Differ. Uravn., 33:12 (1997), 1651–1660; Differ. Equ., 33:12 (1997), 1653–1663
Yu. A. Alkhutov, “The behavior of solutions of parabolic second-order equations in
noncylindrical domains”, Dokl. Akad. Nauk, 345:5 (1995), 583–585
1992
27.
Yu. A. Alkhutov, V. A. Kondratiev, “Solvability of the Dirichlet problem for second-order elliptic equations in a convex domain”, Differ. Uravn., 28:5 (1992), 806–818; Differ. Equ., 28:5 (1992), 650–662
Yu. A. Alkhutov, “Smoothness and limiting properties of solutions of a second-order parabolic equation”, Mat. Zametki, 50:4 (1991), 150–152; Math. Notes, 50:4 (1991), 1085–1087
1990
30.
Yu. A. Alkhutov, “Local properties of solutions of non-divergent parabolic equations of second order”, Uspekhi Mat. Nauk, 45:5(275) (1990), 175–176; Russian Math. Surveys, 45:5 (1990), 221–222
1988
31.
Yu. A. Alkhutov, “Removable singularities of solutions of parabolic equations”, Uspekhi Mat. Nauk, 43:1(259) (1988), 189–190; Russian Math. Surveys, 43:1 (1988), 229–230
1986
32.
Yu. A. Alkhutov, I. T. Mamedov, “The first boundary value problem for nondivergence second order parabolic equations with discontinuous coefficients”, Mat. Sb. (N.S.), 131(173):4(12) (1986), 477–500; Math. USSR-Sb., 59:2 (1988), 471–495
Yu. A. Alkhutov, I. T. Mamedov, “Some properties of the solutions of the first boundary value
problem for parabolic equations with discontinuous coefficients”, Dokl. Akad. Nauk SSSR, 284:1 (1985), 11–16
Yu. A. Alkhutov, “Regularity of boundary points relative to the Dirichlet problem for second-order elliptic equations”, Mat. Zametki, 30:3 (1981), 333–342; Math. Notes, 30:3 (1981), 655–660
Yu. A. Alkhutov, V. F. Butuzov, V. V. Kozlov, A. A. Kon'kov, A. V. Mikhalev, E. I. Moiseev, E. V. Radkevich, N. Kh. Rozov, V. A. Sadovnichii, I. N. Sergeev, M. D. Surnachev, R. N. Tikhomirov, V. N. Chubarikov, T. A. Shaposhnikova, A. A. Shkalikov, “Vasilii Vasilievich Zhikov”, Tr. Semim. im. I. G. Petrovskogo, 32 (2019), 5–7; J. Math. Sci. (N. Y.), 244:2 (2020), 113–115
2018
36.
Yu. A. Alkhutov, I. V. Astashova, V. I. Bogachev, V. N. Denisov, V. V. Kozlov, S. E. Pastukhova, A. L. Piatnitski, V. A. Sadovnichii, A. M. Stepin, A. S. Shamaev, A. A. Shkalikov, “Vasilii Vasil'evich Zhikov (obituary)”, Uspekhi Mat. Nauk, 73:3(441) (2018), 169–176; Russian Math. Surveys, 73:3 (2018), 533–542
Presentations in Math-Net.Ru
1.
Elliptic Equations and Meyers Estimates Yu. A. Alkhutov, G. A. Chechkin International Conference Dedicated to the 100th Anniversary of the Birthday
of V. S. Vladimirov (Vladimirov-100) January 10, 2023 18:00
On regularity of p(x)-harmonic functions Yu. A. Alkhutov, M. D. Surnachev Mathematical Colloquium of the Bauman Moscow State Technical University November 25, 2021 17:30