Persons
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
 
Alkhutov, Yuriy Alexandrovich

Statistics Math-Net.Ru
Total publications: 37
Scientific articles: 34
Presentations: 6

Number of views:
This page:5730
Abstract pages:12773
Full texts:4190
References:1468
Professor
Doctor of physico-mathematical sciences (1992)
Speciality: 01.01.02 (Differential equations, dynamical systems, and optimal control)
E-mail:
Keywords: elliptic and parabolic equations; solvability of a boundary value problem; a priori estimate; boundary properties of solutions; embedding theorem; capacity; removable singularities of solutions; maximal function.

Subject:

The class of nondivergent elliptic equations of the second order with Wiener test regularity of a boundary point in terms of introduced function of ellipticity was described. This class ņontain equations with dicontinuous coefficients. The parabolic analog of Cordes condition guaranteeing unique solvability of the first boundary value problem for nondivergent parabolic equations of the second order in the Sobolev space $W^{2,1}_{2,0}$ was found (with I. T. Mamedov). Necessary and sufficient condition on a boundary for unique $L_p$–solvability of the Dirichlet problem together with the corresponding coercive estimate for divergent elliptic equations of the second order was obtained. The smoothness at a point for solutions of parabolic equations of the second order under minimal assumptions on coefficients was investigated. Inner and boundary properties for solutions of quasilinear elliptic equations for integrands $|\xi|^{p(x)}$ were studied. The Holder property for solutions of degenerate elliptic equations of the second order with a weight that is not satisfying neither Muckenhoupt condition nor double condition was proved (with V. V. Zhikov). Interesting feature of these equations is absent of Harnack inequality for positive solutions.

Biography

Graduated from department of applied mathematics of Azerbaijan Institute of Oil and Chemistry in 1979. Ph.D. thesis was defended in 1982. D.Sci thesis was defended in 1992.

   
Main publications:
  • Alkhutov Yu. A., Mamedov I. T. Pervaya kraevaya zadacha dlya nedivergentnykh parabolicheskikh uravnenii vtorogo poryadka s razryvnymi koeffitsientami // Matem. cbornik, 1986, 173(4), 477–500.
  • Alkhutov Yu. A. Ustranimye osobennosti reshenii parabolicheskikh uravnenii vtorogo poryadka // Matem. zametki, 1991, 50(5), 9–17.
  • Alkhutov Yu. A. Neravenstvo Kharnaka i gelderovost reshenii nelineinykh ellipticheskikh uravnenii s nestandartnym usloviem rosta // Differents. uravneniya, 1997, 33(12), 1651–1660.
  • Alkhutov Yu. A. $L_p$&-otsenki resheniya zadachi Dirikhle dlya ellipticheskikh uravnenii vtorogo poryadka // Matem. cbornik, 1998, 189(1), 3–20.
  • Alkhutov Yu. A., Zhikov V. V. O gelderovosti reshenii vyrozhdayuschikhsya ellipticheskikh uravnenii // Doklady RAN, 2001, 378(5), 583–588.

https://www.mathnet.ru/eng/person8561
List of publications on Google Scholar
List of publications on ZentralBlatt
https://mathscinet.ams.org/mathscinet/MRAuthorID/224718

Publications in Math-Net.Ru Citations
2024
1. Yu. A. Alkhutov, G. A. Chechkin, “On the Boyarsky–Meyers estimate for the solution of the Dirichlet problem for a second-order linear elliptic equation with drift”, CMFD, 70:1 (2024),  1–14  mathnet
2. Yu. A. Alkhutov, G. A. Chechkin, “Multidimensional Zaremba problem for the $p(\,\cdot\,)$-laplace equation. A Boyarsky–Meyers estimate”, TMF, 218:1 (2024),  3–22  mathnet  mathscinet; Theoret. and Math. Phys., 218:1 (2024), 1–18  scopus 1
2023
3. Yu. A. Alkhutov, C. D. Apice, M. A. Kisatov, A. G. Chechkina, “On higher integrability of the gradient of solutions to the Zaremba problem for $p$-Laplace equation”, Dokl. RAN. Math. Inf. Proc. Upr., 512 (2023),  47–51  mathnet  elib; Dokl. Math., 108:1 (2023), 282–285
2022
4. Yu. A. Alkhutov, A. G. Chechkina, “Many-dimensional Zaremba problem for an inhomogeneous $p$-Laplace equation”, Dokl. RAN. Math. Inf. Proc. Upr., 505 (2022),  37–41  mathnet  mathscinet  elib; Dokl. Math., 106:1 (2022), 243–246 6
2021
5. Yu. A. Alkhutov, G. A. Chechkin, “Increased integrability of the gradient of the solution to the Zaremba problem for the Poisson equation”, Dokl. RAN. Math. Inf. Proc. Upr., 497 (2021),  3–6  mathnet  zmath  elib; Dokl. Math., 103:2 (2021), 69–71  scopus 11
6. Yu. A. Alkhutov, M. D. Surnachev, “Interior and boundary continuity of $p(x)$-harmonic functions”, Zap. Nauchn. Sem. POMI, 508 (2021),  7–38  mathnet
2020
7. Yu. A. Alkhutov, M. D. Surnachev, “Hölder Continuity and Harnack's Inequality for $p(x)$-Harmonic Functions”, Trudy Mat. Inst. Steklova, 308 (2020),  7–27  mathnet  mathscinet  elib; Proc. Steklov Inst. Math., 308 (2020), 1–21  isi  scopus 6
8. Yu. A. Alkhutov, M. D. Surnachev, “Estimates of the fundamental solution for an elliptic equation in divergence form with drift”, Zap. Nauchn. Sem. POMI, 489 (2020),  7–35  mathnet 2
9. Yu. A. Alkhutov, M. D. Surnachev, “Harnack inequality for the elliptic $p(x)$-Laplacian with a three-phase exponent $p(x)$”, Zh. Vychisl. Mat. Mat. Fiz., 60:8 (2020),  1329–1338  mathnet  elib; Comput. Math. Math. Phys., 60:8 (2020), 1284–1293  isi  scopus
2019
10. Yu. A. Alkhutov, M. D. Surnachev, “Behavior of solutions of the Dirichlet Problem for the $ p(x)$-Laplacian at a boundary point”, Algebra i Analiz, 31:2 (2019),  88–117  mathnet  elib; St. Petersburg Math. J., 31:2 (2019), 251–271  isi  scopus 19
11. Yu. A. Alkhutov, M. D. Surnachev, “Harnack's inequality for the $p(x)$-Laplacian with a two-phase exponent $p(x)$”, Tr. Semim. im. I. G. Petrovskogo, 32 (2019),  8–56  mathnet  elib; J. Math. Sci. (N. Y.), 244:2 (2020), 116–147  scopus 9
2014
12. Yu. A. Alkhutov, V. N. Denisov, “Necessary and sufficient condition for the stabilization of the solution of a mixed problem for nondivergence parabolic equations to zero”, Tr. Mosk. Mat. Obs., 75:2 (2014),  277–308  mathnet  elib; Trans. Moscow Math. Soc., 75 (2014), 233–258  scopus 5
13. Yu. A. Alkhutov, V. V. Zhikov, “Existence and uniqueness theorems for solutions of parabolic equations with a variable nonlinearity exponent”, Mat. Sb., 205:3 (2014),  3–14  mathnet  mathscinet  zmath  elib; Sb. Math., 205:3 (2014), 307–318  isi  scopus 27
2013
14. Yu. A. Alkhutov, “Hölder continuity of solutions of nondivergent degenerate second-order elliptic equations”, Tr. Semim. im. I. G. Petrovskogo, 29 (2013),  5–42  mathnet  elib; J. Math. Sci. (N. Y.), 197:2 (2014), 151–174  scopus
2012
15. Yu. A. Alkhutov, E. A. Khrenova, “Harnack inequality for a class of second-order degenerate elliptic equations”, Trudy Mat. Inst. Steklova, 278 (2012),  7–15  mathnet  mathscinet  elib; Proc. Steklov Inst. Math., 278 (2012), 1–9  isi  elib  scopus 10
2011
16. Yu. A. Alkhutov, V. V. Zhikov, “Hölder continuity of solutions of parabolic equations with variable nonlinearity exponent”, Tr. Semim. im. I. G. Petrovskogo, 28 (2011),  8–74  mathnet  zmath  elib; J. Math. Sci. (N. Y.), 179:3 (2011), 347–389  scopus 18
2010
17. Yu. A. Alkhutov, V. V. Zhikov, “Existence theorems for solutions of parabolic equations with variable order of nonlinearity”, Trudy Mat. Inst. Steklova, 270 (2010),  21–32  mathnet  mathscinet  zmath  elib; Proc. Steklov Inst. Math., 270 (2010), 15–26  isi  scopus 31
2009
18. Yu. A. Alkhutov, A. N. Gordeev, “$L_p$-solubility of the Dirichlet problem for the heat operator”, Uspekhi Mat. Nauk, 64:1(385) (2009),  137–138  mathnet  mathscinet  zmath  elib; Russian Math. Surveys, 64:1 (2009), 131–133  isi  elib  scopus
2008
19. Yu. A. Alkhutov, O. V. Krasheninnikova, “On the Continuity of Solutions to Elliptic Equations with Variable Order of Nonlinearity”, Trudy Mat. Inst. Steklova, 261 (2008),  7–15  mathnet  mathscinet  zmath  elib; Proc. Steklov Inst. Math., 261 (2008), 1–10  isi  elib  scopus 22
2005
20. Yu. A. Alkhutov, “Hölder continuity of $p(x)$-harmonic functions”, Mat. Sb., 196:2 (2005),  3–28  mathnet  mathscinet  zmath  elib; Sb. Math., 196:2 (2005), 147–171  isi  elib  scopus 25
2004
21. Yu. A. Alkhutov, O. V. Krasheninnikova, “Continuity at boundary points of solutions of quasilinear elliptic equations with a non-standard growth condition”, Izv. RAN. Ser. Mat., 68:6 (2004),  3–60  mathnet  mathscinet  zmath  elib; Izv. Math., 68:6 (2004), 1063–1117  isi  scopus 65
2002
22. Yu. A. Alkhutov, “$L_p$-solubility of the Dirichlet problem for the heat equation in non-cylindrical domains”, Mat. Sb., 193:9 (2002),  3–40  mathnet  mathscinet  zmath; Sb. Math., 193:9 (2002), 1243–1279  isi  scopus 4
1998
23. Yu. A. Alkhutov, V. V. Zhikov, “The leading term of the spectral asymptotics for the Kohn–Laplace operator in a bounded domain”, Mat. Zametki, 64:4 (1998),  493–505  mathnet  mathscinet  zmath; Math. Notes, 64:4 (1998), 429–439  isi 1
24. Yu. A. Alkhutov, “$L_p$-estimates of the solution of the Dirichlet problem for second-order elliptic equations”, Mat. Sb., 189:1 (1998),  3–20  mathnet  mathscinet  zmath; Sb. Math., 189:1 (1998), 1–17  isi  scopus 10
1997
25. Yu. A. Alkhutov, “The Harnack inequality and the Hölder property of solutions of nonlinear elliptic equations with a nonstandard growth condition”, Differ. Uravn., 33:12 (1997),  1651–1660  mathnet  mathscinet; Differ. Equ., 33:12 (1997), 1653–1663 16
1995
26. Yu. A. Alkhutov, “The behavior of solutions of parabolic second-order equations in noncylindrical domains”, Dokl. Akad. Nauk, 345:5 (1995),  583–585  mathnet  mathscinet  zmath
1992
27. Yu. A. Alkhutov, V. A. Kondratiev, “Solvability of the Dirichlet problem for second-order elliptic equations in a convex domain”, Differ. Uravn., 28:5 (1992),  806–818  mathnet  mathscinet; Differ. Equ., 28:5 (1992), 650–662 13
1991
28. Yu. A. Alkhutov, “Removable singularities of solutions of second-order parabolic equations”, Mat. Zametki, 50:5 (1991),  9–17  mathnet  mathscinet  zmath; Math. Notes, 50:5 (1991), 1097–1103  isi 5
29. Yu. A. Alkhutov, “Smoothness and limiting properties of solutions of a second-order parabolic equation”, Mat. Zametki, 50:4 (1991),  150–152  mathnet  mathscinet  zmath; Math. Notes, 50:4 (1991), 1085–1087  isi
1990
30. Yu. A. Alkhutov, “Local properties of solutions of non-divergent parabolic equations of second order”, Uspekhi Mat. Nauk, 45:5(275) (1990),  175–176  mathnet  mathscinet  zmath; Russian Math. Surveys, 45:5 (1990), 221–222  isi
1988
31. Yu. A. Alkhutov, “Removable singularities of solutions of parabolic equations”, Uspekhi Mat. Nauk, 43:1(259) (1988),  189–190  mathnet  mathscinet  zmath; Russian Math. Surveys, 43:1 (1988), 229–230  isi
1986
32. Yu. A. Alkhutov, I. T. Mamedov, “The first boundary value problem for nondivergence second order parabolic equations with discontinuous coefficients”, Mat. Sb. (N.S.), 131(173):4(12) (1986),  477–500  mathnet  mathscinet  zmath; Math. USSR-Sb., 59:2 (1988), 471–495 26
1985
33. Yu. A. Alkhutov, I. T. Mamedov, “Some properties of the solutions of the first boundary value problem for parabolic equations with discontinuous coefficients”, Dokl. Akad. Nauk SSSR, 284:1 (1985),  11–16  mathnet  mathscinet  zmath 2
1981
34. Yu. A. Alkhutov, “Regularity of boundary points relative to the Dirichlet problem for second-order elliptic equations”, Mat. Zametki, 30:3 (1981),  333–342  mathnet  mathscinet  zmath; Math. Notes, 30:3 (1981), 655–660  isi 3

2019
35. Yu. A. Alkhutov, V. F. Butuzov, V. V. Kozlov, A. A. Kon'kov, A. V. Mikhalev, E. I. Moiseev, E. V. Radkevich, N. Kh. Rozov, V. A. Sadovnichii, I. N. Sergeev, M. D. Surnachev, R. N. Tikhomirov, V. N. Chubarikov, T. A. Shaposhnikova, A. A. Shkalikov, “Vasilii Vasilievich Zhikov”, Tr. Semim. im. I. G. Petrovskogo, 32 (2019),  5–7  mathnet  elib; J. Math. Sci. (N. Y.), 244:2 (2020), 113–115  scopus
2018
36. Yu. A. Alkhutov, I. V. Astashova, V. I. Bogachev, V. N. Denisov, V. V. Kozlov, S. E. Pastukhova, A. L. Piatnitski, V. A. Sadovnichii, A. M. Stepin, A. S. Shamaev, A. A. Shkalikov, “Vasilii Vasil'evich Zhikov (obituary)”, Uspekhi Mat. Nauk, 73:3(441) (2018),  169–176  mathnet  mathscinet  zmath  elib; Russian Math. Surveys, 73:3 (2018), 533–542  isi

Presentations in Math-Net.Ru
1. Elliptic Equations and Meyers Estimates
Yu. A. Alkhutov, G. A. Chechkin
International Conference Dedicated to the 100th Anniversary of the Birthday of V. S. Vladimirov (Vladimirov-100)
January 10, 2023 18:00   
2. Boundary regularity for solutions of second-order elliptic equations with partial Muckenhoupt weight.
Yu. A. Alkhutov, M. D. Surnachev
Seminar on nonlinear problems of partial differential equations and mathematical physics
December 7, 2021 18:00   
3. On regularity of p(x)-harmonic functions
Yu. A. Alkhutov, M. D. Surnachev
Mathematical Colloquium of the Bauman Moscow State Technical University
November 25, 2021 17:30
4. Elliptic and parabolic equations of the second order with nonstandard growth condition
Yu. A. Alkhutov
Seminar on nonlinear problems of partial differential equations and mathematical physics
April 20, 2021 19:30   
5. Sharp estimates of solutions to the Dirichlet problem for p(x)- harmonic functions in a neighborhood of the boundary conical point
Yu. A. Alkhutov, M. V. Borsuk
International Conference on Mathematical Control Theory and Mechanics
July 6, 2015 12:40
6. Degenerate elliptic equations in the presence of Lavrent'ev effect
Yu. A. Alkhutov
International Conference on Differential Equations and Dynamical Systems
July 8, 2014 14:30

Organisations
 
  Contact us:
 Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024