Algebra i Analiz
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra i Analiz:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra i Analiz, 2019, Volume 31, Issue 2, Pages 88–117 (Mi aa1639)  

This article is cited in 19 scientific papers (total in 19 papers)

Research Papers

Behavior of solutions of the Dirichlet Problem for the p(x)-Laplacian at a boundary point

Yu. A. Alkhutova, M. D. Surnachevb

a Vladimir State University
b Keldysh Institute of Applied Mathematics of Russian Academy of Sciences
References:
Abstract: The Dirichlet problem for the p(x)-Laplacian with a continuous boundary function is treated. A sufficient condition is indicated for the regularity of a boundary point, and the modulus of continuity of solutions at this point is estimated.
Keywords: Wiener criterion, boundary regularity, Dirichlet problem, variable exponent, p(x)-Laplacian.
Funding agency Grant number
Ministry of Education and Science of the Russian Federation 1.3270.2017/4.6
Russian Foundation for Basic Research 19-01-00184_а
The work was supported by the Ministry of Education and Science of the Russian Federation (grant 1.3270.2017/4.6) and Russian Foundation for Basic Research (grant 19-01-00184-a)
Received: 31.10.2018
English version:
St. Petersburg Mathematical Journal, 2019, Volume 31, Issue 2, Pages 251–271
DOI: https://doi.org/10.1090/spmj/1595
Bibliographic databases:
Document Type: Article
MSC: Primary 35J57, 35J67, 35J92; Secondary 35J15
Language: Russian
Citation: Yu. A. Alkhutov, M. D. Surnachev, “Behavior of solutions of the Dirichlet Problem for the p(x)-Laplacian at a boundary point”, Algebra i Analiz, 31:2 (2019), 88–117; St. Petersburg Math. J., 31:2 (2019), 251–271
Citation in format AMSBIB
\Bibitem{AlkSur19}
\by Yu.~A.~Alkhutov, M.~D.~Surnachev
\paper Behavior of solutions of the Dirichlet Problem for the $ p(x)$-Laplacian at a boundary point
\jour Algebra i Analiz
\yr 2019
\vol 31
\issue 2
\pages 88--117
\mathnet{http://mi.mathnet.ru/aa1639}
\elib{https://elibrary.ru/item.asp?id=46736881}
\transl
\jour St. Petersburg Math. J.
\yr 2019
\vol 31
\issue 2
\pages 251--271
\crossref{https://doi.org/10.1090/spmj/1595}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000515138700004}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85090379882}
Linking options:
  • https://www.mathnet.ru/eng/aa1639
  • https://www.mathnet.ru/eng/aa/v31/i2/p88
  • This publication is cited in the following 19 articles:
    1. Igor Skrypnik, Yevgeniia Yevgenieva, “Harnack inequality for solutions of the p(x)-Laplace equation under the precise non-logarithmic Zhikov's conditions”, Calc. Var., 63:1 (2024)  crossref
    2. Yu. A. Alkhutov, M. D. Surnachev, “Interior and Boundary Continuity of p(x)-Harmonic Functions”, J Math Sci, 283:5 (2024), 699  crossref
    3. Mariia Savchenko, Igor Skrypnik, Yevgeniia Yevgenieva, “Harnack's inequality for degenerate double phase parabolic equations under the non-logarithmic Zhikov's condition”, UMB, 20:1 (2023), 124  crossref
    4. Ihor Skrypnik, Maria Savchenko, Yevgeniia Yevgenieva, “Weak Harnack inequality for unbounded solutions to the p(x)-Laplace equation under the precise non-logarithmic conditions”, Proc. IAMM NASU, 37 (2023), 48  crossref
    5. Mariia Savchenko, Igor Skrypnik, Yevgeniia Yevgenieva, “Harnack's inequality for degenerate double phase parabolic equations under the non-logarithmic Zhikov's condition”, J Math Sci, 273:3 (2023), 427  crossref
    6. Skrypnik I.I., Voitovych M.V., “On the Continuity of Solutions of Quasilinear Parabolic Equations With Generalized Orlicz Growth Under Non-Logarithmic Conditions”, Ann. Mat. Pura Appl., 201:3 (2022), 1381–1416  crossref  mathscinet  isi  scopus
    7. Igor I. Skrypnik, “Harnack's inequality for singular parabolic equations with generalized Orlicz growth under the non-logarithmic Zhikov's condition”, J. Evol. Equ., 22:2 (2022)  crossref
    8. Yu. A. Alkhutov, M. D. Surnachev, “A Variation on the p(x)-Laplace Equation”, J Math Sci, 268:3 (2022), 266  crossref
    9. I. I. Skrypnik, M. V. Voitovych, “B-1 classes of De Giorgi–Ladyzhenskaya–Ural'tseva and their applications to elliptic and parabolic equations with generalized Orlicz growth conditions”, Nonlinear Anal.-Theory Methods Appl., 202 (2021), 112135  crossref  mathscinet  zmath  isi  scopus
    10. Yu. A. Alkhutov, M. D. Surnachev, “Vnutrennyaya i granichnaya nepreryvnost p(x)-garmonicheskikh funktsii”, Kraevye zadachi matematicheskoi fiziki i smezhnye voprosy teorii funktsii. 49, K yubileyu Grigoriya Aleksandrovicha SEREGINA, Zap. nauchn. sem. POMI, 508, POMI, SPb., 2021, 7–38  mathnet
    11. G. Mingione, V. Radulescu, “Recent developments in problems with nonstandard growth and nonuniform ellipticity”, J. Math. Anal. Appl., 501:1, SI (2021), 125197  crossref  mathscinet  zmath  isi  scopus
    12. M. A. Shan, I. I. Skrypnik, M. V. Voitovych, “Harnack's inequality for quasilinear elliptic equations with generalized Orlicz growth”, Electron. J. Differ. Equ., 2021  mathscinet  isi
    13. Maria A. Shan, Igor I. Skrypnik, Mykhailo V. Voitovych, “Harnack's inequality for quasilinear elliptic equations with generalized Orlicz growth”, ejde, 2021:01-104 (2021), 27  crossref
    14. Yu. A. Alkhutov, M. D. Surnachev, “The Boundary Behavior of a Solution to the Dirichlet Problem for a Linear Degenerate Second Order Elliptic Equation”, J Math Sci, 259:2 (2021), 109  crossref
    15. Yu. A. Alkhutov, M. D. Surnachev, “Hölder Continuity and Harnack's Inequality for p(x)-Harmonic Functions”, Proc. Steklov Inst. Math., 308 (2020), 1–21  mathnet  crossref  crossref  mathscinet  isi  elib
    16. A. A. Kon'kov, “Geometric estimates of solutions of quasilinear elliptic inequalities”, Izv. Math., 84:6 (2020), 1056–1104  mathnet  crossref  crossref  zmath  adsnasa  isi  elib
    17. L. M. Kozhevnikova, “Renormalized solutions of elliptic equations with variable exponents and general measure data”, Sb. Math., 211:12 (2020), 1737–1776  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    18. Yu. A. Alkhutov, M. D. Surnachev, “The Boundary Behavior of a Solution to the Dirichlet Problem for the p-Laplacian with Weight Uniformly Degenerate on a Part of Domain with Respect to Small Parameter”, J Math Sci, 250:2 (2020), 183  crossref
    19. Igor Skrypnik, Mykhailo Voitovych, “\mathfrak{B}_{1} classes of De Giorgi, Ladyzhenskaya, and Ural'tseva and their application to elliptic and parabolic equations with nonstandard growth”, UMB, 16:3 (2019), 403  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Алгебра и анализ St. Petersburg Mathematical Journal
    Statistics & downloads:
    Abstract page:390
    Full-text PDF :60
    References:59
    First page:36
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025