Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Dokl. RAN. Math. Inf. Proc. Upr.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia, 2022, Volume 505, Pages 37–41
DOI: https://doi.org/10.31857/S2686954322040026
(Mi danma274)
 

This article is cited in 8 scientific papers (total in 8 papers)

MATHEMATICS

Many-dimensional Zaremba problem for an inhomogeneous $p$-Laplace equation

Yu. A. Alkhutova, A. G. Chechkinabc

a Vladimir State University, Vladimir, Russia
b Lomonosov Moscow State University, Moscow, Russia
c Institute of Mathematics with Computing Centre — Subdivision of the Ufa Federal Research Centre of the Russian Academy of Sciences, Ufa, Bashkortostan, Russia
Citations (8)
References:
Abstract: Higher integrability of the gradient of the solution to the Zaremba problem in a bounded Lipschitz many-dimensional domain for an inhomogeneous $p$-Laplace equation is proved.
Keywords: Zaremba problem, Meyers estimates, $p$-capacity, embedding theorems, higher integrability.
Funding agency Grant number
Russian Science Foundation 22-21-00292
This work was supported by the Russian Science Foundation, project no. 22-21-00292.
Presented: V. V. Kozlov
Received: 16.05.2022
Revised: 10.06.2022
Accepted: 15.06.2022
English version:
Doklady Mathematics, 2022, Volume 106, Issue 1, Pages 243–246
DOI: https://doi.org/10.1134/S1064562422040020
Bibliographic databases:
Document Type: Article
UDC: 517.954, 517.982
Language: Russian
Citation: Yu. A. Alkhutov, A. G. Chechkina, “Many-dimensional Zaremba problem for an inhomogeneous $p$-Laplace equation”, Dokl. RAN. Math. Inf. Proc. Upr., 505 (2022), 37–41; Dokl. Math., 106:1 (2022), 243–246
Citation in format AMSBIB
\Bibitem{AlkChe22}
\by Yu.~A.~Alkhutov, A.~G.~Chechkina
\paper Many-dimensional Zaremba problem for an inhomogeneous $p$-Laplace equation
\jour Dokl. RAN. Math. Inf. Proc. Upr.
\yr 2022
\vol 505
\pages 37--41
\mathnet{http://mi.mathnet.ru/danma274}
\crossref{https://doi.org/10.31857/S2686954322040026}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4489407}
\elib{https://elibrary.ru/item.asp?id=49344494}
\transl
\jour Dokl. Math.
\yr 2022
\vol 106
\issue 1
\pages 243--246
\crossref{https://doi.org/10.1134/S1064562422040020}
Linking options:
  • https://www.mathnet.ru/eng/danma274
  • https://www.mathnet.ru/eng/danma/v505/p37
  • This publication is cited in the following 8 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia
    Statistics & downloads:
    Abstract page:148
    References:22
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024