Loading [MathJax]/jax/output/SVG/config.js
Trudy Matematicheskogo Instituta imeni V.A. Steklova
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Mat. Inst. Steklova:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Matematicheskogo Instituta imeni V.A. Steklova, 2008, Volume 261, Pages 7–15 (Mi tm735)  

This article is cited in 24 scientific papers (total in 24 papers)

On the Continuity of Solutions to Elliptic Equations with Variable Order of Nonlinearity

Yu. A. Alkhutov, O. V. Krasheninnikova

Vladimir State Pedagogical University
References:
Abstract: We study the $p$-Laplacian with variable exponent $p(x)$ bounded away from unity and infinity. We obtain a sufficient condition on $p(x)$ under which all solutions of the $p$-Laplace equation are continuous at a fixed point of a domain, and find an estimate for the modulus of continuity of solutions.
Received in March 2007
English version:
Proceedings of the Steklov Institute of Mathematics, 2008, Volume 261, Pages 1–10
DOI: https://doi.org/10.1134/S0081543808020016
Bibliographic databases:
UDC: 517.956.25
Language: Russian
Citation: Yu. A. Alkhutov, O. V. Krasheninnikova, “On the Continuity of Solutions to Elliptic Equations with Variable Order of Nonlinearity”, Differential equations and dynamical systems, Collected papers, Trudy Mat. Inst. Steklova, 261, MAIK Nauka/Interperiodica, Moscow, 2008, 7–15; Proc. Steklov Inst. Math., 261 (2008), 1–10
Citation in format AMSBIB
\Bibitem{AlkKra08}
\by Yu.~A.~Alkhutov, O.~V.~Krasheninnikova
\paper On the Continuity of Solutions to Elliptic Equations with Variable Order of Nonlinearity
\inbook Differential equations and dynamical systems
\bookinfo Collected papers
\serial Trudy Mat. Inst. Steklova
\yr 2008
\vol 261
\pages 7--15
\publ MAIK Nauka/Interperiodica
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/tm735}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2489692}
\zmath{https://zbmath.org/?q=an:1237.35080}
\elib{https://elibrary.ru/item.asp?id=11032682}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2008
\vol 261
\pages 1--10
\crossref{https://doi.org/10.1134/S0081543808020016}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000262227900001}
\elib{https://elibrary.ru/item.asp?id=13577586}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-48849090703}
Linking options:
  • https://www.mathnet.ru/eng/tm735
  • https://www.mathnet.ru/eng/tm/v261/p7
  • This publication is cited in the following 24 articles:
    1. Igor Skrypnik, Yevgeniia Yevgenieva, “Harnack inequality for solutions of the p(x)-Laplace equation under the precise non-logarithmic Zhikov's conditions”, Calc. Var., 63:1 (2024)  crossref
    2. Tran Thi Hanh, Cong Nhan Le, “A New De Giorgi class type related to the Caffarelli-Kohn-Nirenberg weights and Hölder continuity”, Journal of Mathematical Analysis and Applications, 2024, 128696  crossref
    3. Mokhtar Naceri, “Variable exponents anisotropic nonlinear elliptic systems with Lp′→(⋅)-data”, Applicable Analysis, 2024, 1  crossref
    4. Andrii S. Bychkov, Oleksandr V. Hadzhy, Yevhen S. Zozulia, “On the generalized weak Harnack inequality for non-negative super-solutions of quasilinear elliptic equations with absorption term”, J Math Sci, 282:1 (2024), 13  crossref
    5. Yu. A. Alkhutov, M. D. Surnachev, “Interior and Boundary Continuity of p(x)-Harmonic Functions”, J Math Sci, 283:5 (2024), 699  crossref
    6. Simone Ciani, Eurica Henriques, Igor I. Skrypnik, “The weak Harnack inequality for unbounded minimizers of elliptic functionals with generalized Orlicz growth”, Advances in Calculus of Variations, 2024  crossref
    7. Andrii S. Bychkov, Oleksandr V. Hadzhy, Yevhen S. Zozulia, “On the generalized weak Harnack inequality for non-negative super-solutions of quasilinear elliptic equations with absorption term”, UMB, 21:1 (2024), 16  crossref
    8. Mariia Savchenko, Igor Skrypnik, Yevgeniia Yevgenieva, “Harnack's inequality for degenerate double phase parabolic equations under the non-logarithmic Zhikov's condition”, J Math Sci, 273:3 (2023), 427  crossref
    9. Ihor Skrypnik, Maria Savchenko, Yevgeniia Yevgenieva, “Weak Harnack inequality for unbounded solutions to the p(x)-Laplace equation under the precise non-logarithmic conditions”, Proc. IAMM NASU, 37 (2023), 48  crossref
    10. Mariia Savchenko, Igor Skrypnik, Yevgeniia Yevgenieva, “Harnack's inequality for degenerate double phase parabolic equations under the non-logarithmic Zhikov's condition”, UMB, 20:1 (2023), 124  crossref
    11. Skrypnik I.I., Voitovych M.V., “On the Continuity of Solutions of Quasilinear Parabolic Equations With Generalized Orlicz Growth Under Non-Logarithmic Conditions”, Ann. Mat. Pura Appl., 201:3 (2022), 1381–1416  crossref  mathscinet  isi
    12. Yu. A. Alkhutov, M. D. Surnachev, “A Variation on the p(x)-Laplace Equation”, J Math Sci, 268:3 (2022), 266  crossref
    13. Igor I. Skrypnik, “Harnack's inequality for singular parabolic equations with generalized Orlicz growth under the non-logarithmic Zhikov's condition”, J. Evol. Equ., 22:2 (2022)  crossref
    14. Skrypnik I.I., Voitovych M.V., “B-1 Classes of de Giorgi-Ladyzhenskaya-Ural'Tseva and Their Applications to Elliptic and Parabolic Equations With Generalized Orlicz Growth Conditions”, Nonlinear Anal.-Theory Methods Appl., 202 (2021), 112135  crossref  mathscinet  isi
    15. Yu. A. Alkhutov, M. D. Surnachev, “Vnutrennyaya i granichnaya nepreryvnost $p(x)$-garmonicheskikh funktsii”, Kraevye zadachi matematicheskoi fiziki i smezhnye voprosy teorii funktsii. 49, K yubileyu Grigoriya Aleksandrovicha SEREGINA, Zap. nauchn. sem. POMI, 508, POMI, SPb., 2021, 7–38  mathnet
    16. Shan M.A., Skrypnik I.I., Voitovych M.V., “Harnack'S Inequality For Quasilinear Elliptic Equations With Generalized Orlicz Growth”, Electron. J. Differ. Equ., 2021  mathscinet  isi
    17. Maria A. Shan, Igor I. Skrypnik, Mykhailo V. Voitovych, “Harnack's inequality for quasilinear elliptic equations with generalized Orlicz growth”, ejde, 2021:01-104 (2021), 27  crossref
    18. Yu. A. Alkhutov, M. D. Surnachev, “Hölder Continuity and Harnack's Inequality for $p(x)$-Harmonic Functions”, Proc. Steklov Inst. Math., 308 (2020), 1–21  mathnet  crossref  crossref  mathscinet  isi  elib
    19. Yu. A. Alkhutov, M. D. Surnachev, “Harnack inequality for the elliptic $p(x)$-Laplacian with a three-phase exponent $p(x)$”, Comput. Math. Math. Phys., 60:8 (2020), 1284–1293  mathnet  crossref  crossref  isi  elib
    20. Igor I. Skrypnik, Mykhailo V. Voitovych, “$ {\mathfrak{B}}_1 $ classes of De Giorgi, Ladyzhenskaya, and Ural'tseva and their application to elliptic and parabolic equations with nonstandard growth”, J Math Sci, 246:1 (2020), 75  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Труды Математического института имени В. А. Стеклова Proceedings of the Steklov Institute of Mathematics
    Statistics & downloads:
    Abstract page:492
    Full-text PDF :109
    References:103
    First page:24
     
      Contact us:
    math-net2025_04@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025