Izvestiya: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya: Mathematics, 2004, Volume 68, Issue 6, Pages 1063–1117
DOI: https://doi.org/10.1070/IM2004v068n06ABEH000509
(Mi im509)
 

This article is cited in 65 scientific papers (total in 65 papers)

Continuity at boundary points of solutions of quasilinear elliptic equations with a non-standard growth condition

Yu. A. Alkhutov, O. V. Krasheninnikova
References:
Abstract: We study the behaviour at boundary points of a solution of the Dirichlet problem with continuous boundary function for the Euler equation generated by the Lagrangian $|\nabla u|^{p(x)}/p(x)$ with variable$p=p(x)$ that has logarithmic modulus of continuity and satisfies the condition $1<p_1\leqslant p(x)\leqslant p_2<\infty$. We obtain a regularity criterion for a boundary point of Wiener type, an estimate for the modulus of continuity of the solution near a regular boundary point, and geometric conditions for regularity.
Received: 25.02.2004
Russian version:
Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya, 2004, Volume 68, Issue 6, Pages 3–60
DOI: https://doi.org/10.4213/im509
Bibliographic databases:
UDC: 517.946
Language: English
Original paper language: Russian
Citation: Yu. A. Alkhutov, O. V. Krasheninnikova, “Continuity at boundary points of solutions of quasilinear elliptic equations with a non-standard growth condition”, Izv. RAN. Ser. Mat., 68:6 (2004), 3–60; Izv. Math., 68:6 (2004), 1063–1117
Citation in format AMSBIB
\Bibitem{AlkKra04}
\by Yu.~A.~Alkhutov, O.~V.~Krasheninnikova
\paper Continuity at boundary points of solutions of quasilinear elliptic equations with a~non-standard growth condition
\jour Izv. RAN. Ser. Mat.
\yr 2004
\vol 68
\issue 6
\pages 3--60
\mathnet{http://mi.mathnet.ru/im509}
\crossref{https://doi.org/10.4213/im509}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2108520}
\zmath{https://zbmath.org/?q=an:1167.35385}
\elib{https://elibrary.ru/item.asp?id=13859189}
\transl
\jour Izv. Math.
\yr 2004
\vol 68
\issue 6
\pages 1063--1117
\crossref{https://doi.org/10.1070/IM2004v068n06ABEH000509}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000227279000001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-33746561308}
Linking options:
  • https://www.mathnet.ru/eng/im509
  • https://doi.org/10.1070/IM2004v068n06ABEH000509
  • https://www.mathnet.ru/eng/im/v68/i6/p3
  • This publication is cited in the following 65 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
    Statistics & downloads:
    Abstract page:902
    Russian version PDF:354
    English version PDF:43
    References:94
    First page:2
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024