Videolibrary
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
Video Library
Archive
Most viewed videos

Search
RSS
New in collection






International Conference Dedicated to the 100th Anniversary of the Birthday of V. S. Vladimirov (Vladimirov-100)
January 10, 2023 18:00–18:30, Moscow, Steklov Mathematical Institute, room 430 (Gubkina 8) + Zoom
 


Elliptic Equations and Meyers Estimates

Yu. A. Alkhutova, G. A. Chechkinb

a Vladimir State University
b Lomonosov Moscow State University
Video records:
MP4 72.9 Mb
Supplementary materials:
Adobe PDF 4.0 Mb

Number of views:
This page:224
Video files:36
Materials:28



Abstract: This work is connected with estimates of solutions to the Zaremba problem for elliptic equation in bounded Lipschitz domain $D\in \mathbb{R}^n$, where $n>1$, of the form
\begin{equation}\label{op} \mathcal{L}u:=\text{div} (|\nabla u|^{p-2}a(x)\nabla u) \end{equation}
with uniformly elliptic measurable and symmetric matrix $a(x)=\{a_{ij}(x)\}$, i.e. $a_{ij}=a_{ji}$ and
\begin{equation}\label{1} \alpha^{-1}|\xi|^2\le \sum\limits_{i,j=1}^na_{ij}(x)\xi_i\xi_j\le\alpha |\xi|^2~\text{for almost all}~x\in D~\text{and all}~\xi\in \mathbb{R}^n. \end{equation}
We assume that $F\subset\partial D$ is closed and $G=\partial D\setminus F$. Consider the Zaremba problem
\begin{equation}\label{2} \left\{\begin {array}{l} \mathcal{L}u=l\quad \text{in}\quad D,\\ u=0\quad \text{on}\quad F,\\ \frac{\partial u}{\partial \nu}=0\quad \text{on}\quad G, \end{array}\right. \end{equation}
where $\frac{\partial u}{\partial \nu}$ is the outer conormal derivative of $u$, and $l$ is a linear functional on $W^1_p(D, F)$, the completion of the set of infinitely differentiable in the closure of $D$ functions vanishing in the vicinity of $F$, by the norm
$$ \parallel u\parallel_{W^{1}_p(D, F)}=\biggl (~\int\limits_{D} u^p\,dx+\int\limits_{D}|\nabla u|^p\,dx\biggr )^{1/p}. $$
By the solution of the problem \eqref{2} we mean the function $u \in W^1_p (D, F)$ for which the integral identity
\begin{equation}\label{3} \int\limits_{D}|\nabla u|^{p-2}a\nabla u\cdot\nabla\varphi\,dx=\int\limits_{D} f\cdot\nabla\varphi\,dx \end{equation}
holds for all test-functions $\varphi\in W^1_p(D, F)$, the components of the vector-function $f=(f_1,\ldots,f_n)$ belong to $L_{p'}(D)$, $p'=\frac{p}{p-1}$. For the compact $K\subset \mathbb{R}^n$ we define the capacity $C_q(K)$, $1<q<n$, by the formula
\begin{equation}\label{hu} C_q(K)=\inf~ \biggl \{~ \int\limits_{\mathbb{R}^n}|\nabla\varphi|^q\,dx:~\varphi\in C^\infty_0 (\mathbb{R}^n),~\varphi\ge 1~\text{on}~K\biggr \}, \end{equation}
if $p\in (1, n/(n-1)]$, then $q=(p+1)/2$, but if $r\in (n/(n-1), n]$, where $n > 2$, then $q=np/(n+p)$.
$\bullet$ Case of linear equation ($p=2$).
Suppose $B^{x_0}_r$ is an open ball of the radius $r$ centered in $x_0$, and $mes_{n-1}(E)$ is $(n-1)$-measure of the set $E$. Assume also that $q=2n/(n+2)$ as $n>2$ and $q=3/2$ as $n=2$. We suppose one of the following conditions is fulfilled: for an arbitrary point $x_0\in F$ as $r\le r_0$ the inequality
\begin{equation}\label{g1} C_q( F\cap \overline B^{x_0}_r)\ge c_0 r^{n-q} \end{equation}
holds true or the inequality
\begin{equation}\label{g2} mes_{n -1}( F\cap \overline B^{x_0}_r)\ge c_0 r^{n-1} \end{equation}
holds, the positive constant $c_0$ does not depend on $x_0$ and $r$. Condition \eqref{g2} is universal (even for nonlinear equations).
Theorem. If $f\in L_{2+\delta_0}(D)$, where $\delta_0>0$, then there exist positive constants $\delta(n,\delta_0)<\delta_0$ and $C$, such that for a solution to the problem \eqref{2} the estimate
\begin{equation}\label{t} \int\limits_{D}|\nabla u|^{2+\delta}dx\leq C\int\limits_{D}|f|^{2+\delta}\ dx, \end{equation}
holds, where $C$ depends only on $\delta_0$, the dimension $n$, constant $c_0$ from \eqref{g1} and \eqref{g2}, and also the constant $r_0$.
$\bullet$ Case of $p$-elliptic equation ($p>1$).
A. If $1< p \le n$, then the following condition is assumed to hold: for an arbitrary point $x_0\in F$ for $r\le r_0$, the condition \eqref{g1} is true.
B. If $p> n$, then the set $F$ is assumed to be nonempty: $F\neq \emptyset$.
Theorem. If $f\in L_{p'+\delta_0}(\Omega)$, where $\delta_0>0$, then there exist positive constants $\delta(n, p,\delta_0)<\delta_0$ and $C$, such that for a solution to the problem \eqref{2} the estimate
\begin{equation}\label{tm} \int\limits_{\Omega}|\nabla u|^{p+\delta}dx\leq C\int\limits_{\Omega}|f|^{p'(1+\delta/p)}\ dx, \end{equation}
holds, where $C$ depends only on $p$, $\delta_0$, the dimension $n$, constant $c_0$ from \eqref{g1} and \eqref{g2}, and also the constant $r_0$.

Supplementary materials: Alkhutov.pdf (4.0 Mb)

Language: English

References
  1. Yu.A. Alkhutov, G.A. Chechkin, “The Meyer's Estimate of Solutions to Zaremba Problem for Second-order Elliptic Equations in Divergent Form”, C R Mécanique, 349:2 (2021), 299–304
  2. Yu.A. Alkhutov, G.A. Chechkin, V.G. Maz'ya, “On the Boyarsky–Meyers Estimate of a Solution to the Zaremba Problem”, Arch Rational Mech Anal, 245:2 (2022), 1197–1211  crossref
  3. Yu.A. Alkhutov, A.G. Chechkina, “Many-Dimensional Zaremba Problem for an Inhomogeneous $p$-Laplace Equation”, Russian Academy of Sciences. Doklady Mathematics, 106:1 (2022), 143–146
 
  Contact us:
 Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024