Processing math: 50%
Trudy Matematicheskogo Instituta imeni V.A. Steklova
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Mat. Inst. Steklova:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Matematicheskogo Instituta imeni V.A. Steklova, 2010, Volume 270, Pages 21–32 (Mi tm3011)  

This article is cited in 31 scientific papers (total in 31 papers)

Existence theorems for solutions of parabolic equations with variable order of nonlinearity

Yu. A. Alkhutov, V. V. Zhikov

Vladimir State University for the Humanities, Vladimir, Russia
References:
Abstract: We study the solvability of an initial-boundary value problem for second-order parabolic equations with variable order of nonlinearity. In the model case, the equation contains the p-Laplacian with a variable exponent p(x,t). We prove that if the measurable exponent p is separated from unity and infinity, then the problem has W- and H-solutions.
Received in October 2009
English version:
Proceedings of the Steklov Institute of Mathematics, 2010, Volume 270, Pages 15–26
DOI: https://doi.org/10.1134/S0081543810030028
Bibliographic databases:
Document Type: Article
UDC: 517.958
Language: Russian
Citation: Yu. A. Alkhutov, V. V. Zhikov, “Existence theorems for solutions of parabolic equations with variable order of nonlinearity”, Differential equations and dynamical systems, Collected papers, Trudy Mat. Inst. Steklova, 270, MAIK Nauka/Interperiodica, Moscow, 2010, 21–32; Proc. Steklov Inst. Math., 270 (2010), 15–26
Citation in format AMSBIB
\Bibitem{AlkZhi10}
\by Yu.~A.~Alkhutov, V.~V.~Zhikov
\paper Existence theorems for solutions of parabolic equations with variable order of nonlinearity
\inbook Differential equations and dynamical systems
\bookinfo Collected papers
\serial Trudy Mat. Inst. Steklova
\yr 2010
\vol 270
\pages 21--32
\publ MAIK Nauka/Interperiodica
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/tm3011}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2768934}
\zmath{https://zbmath.org/?q=an:1213.35262}
\elib{https://elibrary.ru/item.asp?id=15249747}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2010
\vol 270
\pages 15--26
\crossref{https://doi.org/10.1134/S0081543810030028}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000282431700002}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-77957336639}
Linking options:
  • https://www.mathnet.ru/eng/tm3011
  • https://www.mathnet.ru/eng/tm/v270/p21
  • This publication is cited in the following 31 articles:
    1. Mokhtar Naceri, “Variable exponents anisotropic nonlinear elliptic systems with Lp′→(⋅)-data”, Applicable Analysis, 2024, 1  crossref
    2. Rakesh Arora, Sergey Shmarev, “Optimal global second-order regularity and improved integrability for parabolic equations with variable growth”, Advances in Nonlinear Analysis, 13:1 (2024)  crossref
    3. Peter Kogut, Yaroslav Kohut, “Optimal Sparse Control Formulation for Reconstruction of Noise-Affected Images”, Axioms, 12:12 (2023), 1073  crossref
    4. M. D. Surnachev, “Harnack's Inequality of Weak Type for the Parabolic p(x)-Laplacian”, Math. Notes, 111:1 (2022), 161–165  mathnet  crossref  crossref  mathscinet  isi
    5. Mikhail Surnachev, “On the weak Harnack inequality for the parabolic p ( x )-Laplacian”, ASY, 130:1-2 (2022), 127  crossref
    6. Arora R., Shmarev S., “Strong Solutions of Evolution Equations With P(X, T)-Laplacian: Existence, Global Higher Integrability of the Gradients and Second-Order Regularity”, J. Math. Anal. Appl., 493:1 (2021), 124506  crossref  mathscinet  isi
    7. S. N. Antontsev, I. V. Kuznetsov, S. A. Sazhenkov, “A shock layer arising as the source term collapses in the p(\boldsymbol{x})-Laplacian equation”, Probl. anal. Issues Anal., 9(27):3 (2020), 31–53  mathnet  crossref  elib
    8. Arora R., Giacomoni J., Warnault G., “Doubly Nonlinear Equation Involving P(X)-Homogeneous Operators: Local Existence, Uniqueness and Global Behaviour”, J. Math. Anal. Appl., 487:2 (2020), 124009  crossref  mathscinet  isi
    9. Arumugam G., Tyagi J., “Nonnegative Solutions to Reaction-Diffusion System With Cross-Diffusion and Nonstandard Growth Conditions”, Math. Meth. Appl. Sci., 43:10 (2020), 6576–6597  crossref  mathscinet  isi
    10. Ding M., Zhang Ch., Zhou Sh., “Global Boundedness and Holder Regularity of Solutions to General P(X, T)-Laplace Parabolic Equations”, Math. Meth. Appl. Sci., 43:9 (2020), 5809–5831  crossref  mathscinet  isi
    11. Arumugam G., Erhardt A.H., “Existence of Weak Solutions to a Certain Homogeneous Parabolic Neumann Problem Involving Variable Exponents and Cross-Diffusion”, J. Elliptic Parabol. Equat., 6:2 (2020), 685–709  crossref  mathscinet  isi  scopus
    12. Arumugam G., Erhardt A.H., “Existence and Uniqueness of Weak Solutions to Parabolic Problems With Nonstandard Growth and Cross Diffusion”, Electron. J. Differ. Equ., 2020, 123  mathscinet  isi
    13. Gurusamy Arumugam, Andre H. Erhardt, “Existence and uniqueness of weak solutions to parabolic problems with nonstandard growth and cross diffusion”, ejde, 2020:01-132 (2020), 123  crossref
    14. Antontsev S., Shmarev S., “Higher Regularity of Solutions of Singular Parabolic Equations With Variable Nonlinearity”, Appl. Anal., 98:1-2, SI (2019), 310–331  crossref  mathscinet  isi  scopus
    15. Crispo F., Maremonti P., Ruzicka M., “Global l-R-Estimates and Regularizing Effect For Solutions to the P(T, X)-Laplacian Systems”, Adv. Differ. Equat., 24:7-8 (2019), 407–434  mathscinet  isi
    16. Antontsev S., Kuznetsov I., Shmarev S., “Global Higher Regularity of Solutions to Singular P(X, T)-Parabolic Equations”, J. Math. Anal. Appl., 466:1 (2018), 238–263  crossref  mathscinet  zmath  isi  scopus
    17. Niu W., Chai X., “Global attractors for nonlinear parabolic equations with nonstandard growth and irregular data”, J. Math. Anal. Appl., 451:1 (2017), 34–63  crossref  mathscinet  zmath  isi  scopus
    18. Erhardt A.H., “Compact embedding for p(x,?t)-Sobolev spaces and existence theory to parabolic equations with p(x,?t)-growth”, Rev. Mat. Complut., 30:1 (2017), 35–61  crossref  mathscinet  zmath  isi  scopus
    19. Erhardt A.H., “The Stability of Parabolic Problems With Nonstandard P (X, T)-Growth”, 5, no. 4, 2017, 50  crossref  zmath  isi  scopus
    20. È. R. Andriyanova, F. Kh. Mukminov, “Existence and qualitative properties of a solution of the first mixed problem for a parabolic equation with non-power-law double nonlinearity”, Sb. Math., 207:1 (2016), 1–40  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib  elib
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Труды Математического института имени В. А. Стеклова Proceedings of the Steklov Institute of Mathematics
    Statistics & downloads:
    Abstract page:668
    Full-text PDF :122
    References:140
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025