Persons
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
 
Paramonov, Petr Vladimirovich

E-mail:

https://www.mathnet.ru/eng/person8351
List of publications on Google Scholar
https://mathscinet.ams.org/mathscinet/MRAuthorID/243492

Publications in Math-Net.Ru Citations
2024
1. M. Ya. Mazalov, P. V. Paramonov, K. Yu. Fedorovskiy, “Criteria of the $C^m$ approximability of functions on compact sets in $\mathbb{R}^N$ by solutions of homogeneous elliptic equations of the second order and related capacities”, Uspekhi Mat. Nauk, 79:5(479) (2024),  101–177  mathnet
2023
2. P. V. Paramonov, K. Yu. Fedorovskiy, “Explicit form of fundamental solutions to certain elliptic equations and associated $B$- and $C$-capacities”, Mat. Sb., 214:4 (2023),  114–131  mathnet  mathscinet  zmath; Sb. Math., 214:4 (2023), 550–566  isi  scopus 4
2022
3. P. V. Paramonov, “On metric properties of $C$-capacities associated with solutions of second-order strongly elliptic equations in $\pmb{\mathbb R}^2$”, Mat. Sb., 213:6 (2022),  111–124  mathnet  mathscinet  zmath; Sb. Math., 213:6 (2022), 831–843  isi  scopus 3
2021
4. P. V. Paramonov, “Criteria for $C^1$-approximability of functions on compact sets in ${\mathbb{R}}^N$, $N\geqslant 3$, by solutions of second-order homogeneous elliptic equations”, Izv. RAN. Ser. Mat., 85:3 (2021),  154–177  mathnet  zmath  elib; Izv. Math., 85:3 (2021), 483–505  isi  scopus 2
5. P. V. Paramonov, “Uniform approximation of functions by solutions of strongly elliptic equations of second order on compact subsets of $\mathbb R^2$”, Mat. Sb., 212:12 (2021),  77–94  mathnet  zmath; Sb. Math., 212:12 (2021), 1730–1745  isi  scopus 7
2020
6. P. V. Paramonov, K. Yu. Fedorovskiy, “On $C^m$-reflection of harmonic functions and $C^m$-approximation by harmonic polynomials”, Mat. Sb., 211:8 (2020),  102–113  mathnet  mathscinet  zmath  elib; Sb. Math., 211:8 (2020), 1159–1170  isi  scopus 1
2018
7. P. V. Paramonov, “Criteria for the individual $C^m$-approximability of functions on compact subsets of $\mathbb R^N$ by solutions of second-order homogeneous elliptic equations”, Mat. Sb., 209:6 (2018),  83–97  mathnet  mathscinet  zmath  elib; Sb. Math., 209:6 (2018), 857–870  isi  scopus 7
2017
8. P. V. Paramonov, “New Criteria for Uniform Approximability by Harmonic Functions on Compact Sets in $\mathbb R^2$”, Trudy Mat. Inst. Steklova, 298 (2017),  216–226  mathnet  elib; Proc. Steklov Inst. Math., 298 (2017), 201–211  isi  scopus 5
2015
9. P. V. Paramonov, K. Yu. Fedorovskiy, “Tverberg's proof of the Jordan closed curve theorem”, Algebra i Analiz, 27:5 (2015),  207–220  mathnet  mathscinet  elib; St. Petersburg Math. J., 27:5 (2016), 851–860  isi  scopus
10. M. Ya. Mazalov, P. V. Paramonov, “Criteria for $C^m$-approximability by bianalytic functions on planar compact sets”, Mat. Sb., 206:2 (2015),  77–118  mathnet  mathscinet  zmath  elib; Sb. Math., 206:2 (2015), 242–281  isi  scopus 6
11. A. Boivin, P. M. Gauthier, P. V. Paramonov, “Runge- and Walsh-type extensions of smooth subharmonic functions on open Riemann surfaces”, Mat. Sb., 206:1 (2015),  5–28  mathnet  mathscinet  zmath  elib; Sb. Math., 206:1 (2015), 3–23  isi  scopus 1
2012
12. M. Ya. Mazalov, P. V. Paramonov, K. Yu. Fedorovskiy, “Conditions for $C^m$-approximability of functions by solutions of elliptic equations”, Uspekhi Mat. Nauk, 67:6(408) (2012),  53–100  mathnet  mathscinet  zmath  elib; Russian Math. Surveys, 67:6 (2012), 1023–1068  isi  elib  scopus 34
13. A. Boivin, P. M. Gauthier, P. V. Paramonov, “$C^m$-subharmonic extension of Runge type from closed to open subsets of $\mathbb R^n$”, Trudy Mat. Inst. Steklova, 279 (2012),  219–226  mathnet  mathscinet  elib; Proc. Steklov Inst. Math., 279 (2012), 207–214  isi 3
2011
14. P. V. Paramonov, “On $C^m$-Extension of Subharmonic Functions from Lyapunov–Dini Domains to $\mathbb R^N$”, Mat. Zametki, 89:1 (2011),  149–152  mathnet  mathscinet  zmath; Math. Notes, 89:1 (2011), 160–164  isi  scopus 4
2008
15. P. V. Paramonov, “$C^1$-extension and $C^1$-reflection of subharmonic functions from Lyapunov-Dini domains into $\mathbb R^N$”, Mat. Sb., 199:12 (2008),  79–116  mathnet  mathscinet  zmath  elib; Sb. Math., 199:12 (2008), 1809–1846  isi  elib  scopus 10
2005
16. P. V. Paramonov, “$C^m$-extension of subharmonic functions”, Izv. RAN. Ser. Mat., 69:6 (2005),  139–152  mathnet  mathscinet  zmath  elib; Izv. Math., 69:6 (2005), 1211–1223  isi  scopus 7
2004
17. M. S. Mel'nikov, P. V. Paramonov, “$C^1$-extension of subharmonic functions from closed Jordan domains in $\mathbb R^2$”, Izv. RAN. Ser. Mat., 68:6 (2004),  105–118  mathnet  mathscinet  zmath; Izv. Math., 68:6 (2004), 1165–1178  isi  scopus 8
18. A. Boivin, P. M. Gauthier, P. V. Paramonov, “On uniform approximation by $n$-analytic functions on closed sets in $\mathbb C$”, Izv. RAN. Ser. Mat., 68:3 (2004),  15–28  mathnet  mathscinet  zmath  elib; Izv. Math., 68:3 (2004), 447–459  isi  scopus 23
2002
19. J. J. Carmona, P. V. Paramonov, K. Yu. Fedorovskiy, “On uniform approximation by polyanalytic polynomials and the Dirichlet problem for bianalytic functions”, Mat. Sb., 193:10 (2002),  75–98  mathnet  mathscinet  zmath  elib; Sb. Math., 193:10 (2002), 1469–1492  isi  scopus 43
2001
20. J. Verdera, M. S. Mel'nikov, P. V. Paramonov, “$C^1$-approximation and extension of subharmonic functions”, Mat. Sb., 192:4 (2001),  37–58  mathnet  mathscinet  zmath; Sb. Math., 192:4 (2001), 515–535  isi  scopus 28
21. P. Mattila, P. V. Paramonov, “On Density Properties of the Riesz Capacities and the Analytic Capacity $\gamma _+$”, Trudy Mat. Inst. Steklova, 235 (2001),  143–156  mathnet  mathscinet  zmath; Proc. Steklov Inst. Math., 235 (2001), 136–149 5
1999
22. P. V. Paramonov, K. Yu. Fedorovskiy, “Uniform and $C^1$-approximability of functions on compact subsets of $\mathbb R^2$ by solutions of second-order elliptic equations”, Mat. Sb., 190:2 (1999),  123–144  mathnet  mathscinet  zmath; Sb. Math., 190:2 (1999), 285–307  isi  scopus 30
1998
23. A. Boivin, P. V. Paramonov, “Approximation by meromorphic and entire solutions of elliptic equations in Banach spaces of distributions”, Mat. Sb., 189:4 (1998),  3–24  mathnet  mathscinet  zmath; Sb. Math., 189:4 (1998), 481–502  isi  scopus 12
1995
24. P. V. Paramonov, “Some new criteria for uniform approximability of functions by rational fractions”, Mat. Sb., 186:9 (1995),  97–112  mathnet  mathscinet  zmath; Sb. Math., 186:9 (1995), 1325–1340  isi 20
1993
25. P. V. Paramonov, “On approximation by harmonic polynomials in the $C^1$-norm on compact sets in $\mathbf R^2$”, Izv. RAN. Ser. Mat., 57:2 (1993),  113–124  mathnet  mathscinet  zmath; Russian Acad. Sci. Izv. Math., 42:2 (1994), 321–331  isi 8
26. P. M. Gauthier, P. V. Paramonov, “Approximation by harmonic functions in the $C^1$-norm and harmonic $C^1$-content of compact subsets in $\mathbb R^n$”, Mat. Zametki, 53:4 (1993),  21–30  mathnet  mathscinet  zmath  elib; Math. Notes, 53:4 (1993), 373–378  isi 4
27. P. V. Paramonov, “$C^m$-approximations by harmonic polynomials on compact sets in $\mathbb R^n$”, Mat. Sb., 184:2 (1993),  105–128  mathnet  mathscinet  zmath; Russian Acad. Sci. Sb. Math., 78:1 (1994), 231–251  isi 25
1990
28. P. V. Paramonov, “On harmonic approximation in the $C^1$-norm”, Mat. Sb., 181:10 (1990),  1341–1365  mathnet  mathscinet  zmath; Math. USSR-Sb., 71:1 (1992), 183–207  isi 40
1988
29. P. V. Paramonov, “Control in scanning search for an immovable object”, Avtomat. i Telemekh., 1988, no. 11,  102–112  mathnet  mathscinet  zmath; Autom. Remote Control, 49:11 (1988), 1473–1482 1
1987
30. P. V. Paramonov, “On the possibility of division and involution to a fractional power in the algebra of rational functions”, Izv. Akad. Nauk SSSR Ser. Mat., 51:2 (1987),  412–420  mathnet  mathscinet  zmath; Math. USSR-Izv., 30:2 (1988), 385–393 1
1983
31. P. V. Paramonov, “On a sufficient condition for approximability of a function by rational fractions”, Dokl. Akad. Nauk SSSR, 268:2 (1983),  292–295  mathnet  mathscinet  zmath 1
1982
32. P. V. Paramonov, “On the interconnection of local and global approximations by holomorphic functions”, Izv. Akad. Nauk SSSR Ser. Mat., 46:1 (1982),  100–116  mathnet  mathscinet  zmath; Math. USSR-Izv., 20:1 (1983), 103–118 2

2018
33. A. I. Aptekarev, V. K. Beloshapka, V. I. Buslaev, V. V. Goryainov, V. N. Dubinin, V. A. Zorich, N. G. Kruzhilin, S. Yu. Nemirovski, S. Yu. Orevkov, P. V. Paramonov, S. I. Pinchuk, A. S. Sadullaev, A. G. Sergeev, S. P. Suetin, A. B. Sukhov, K. Yu. Fedorovskiy, A. K. Tsikh, “Evgenii Mikhailovich Chirka (on his 75th birthday)”, Uspekhi Mat. Nauk, 73:6(444) (2018),  204–210  mathnet  mathscinet  zmath  elib; Russian Math. Surveys, 73:6 (2018), 1137–1144  isi
2014
34. A. I. Aptekarev, P. A. Borodin, B. S. Kashin, Yu. V. Nesterenko, P. V. Paramonov, A. V. Pokrovskii, A. G. Sergeev, A. T. Fomenko, “Evgenii Prokof'evich Dolzhenko (on his 80th birthday)”, Uspekhi Mat. Nauk, 69:6(420) (2014),  192–196  mathnet  mathscinet  zmath  elib; Russian Math. Surveys, 69:6 (2014), 1143–1148  isi
2002
35. V. K. Beloshapka, V. S. Vladimirov, A. A. Gonchar, E. P. Dolzhenko, N. G. Kruzhilin, V. V. Napalkov, P. V. Paramonov, A. G. Sergeev, P. L. Ul'yanov, E. M. Chirka, “Anatolii Georgievich Vitushkin (on his 70th birthday)”, Uspekhi Mat. Nauk, 57:1(343) (2002),  179–184  mathnet  mathscinet  zmath; Russian Math. Surveys, 57:1 (2002), 183–190  isi 2

Presentations in Math-Net.Ru
1. Criteria for $C^m$-approximability of functions by solutions of homogeneous elliptic equations of second order on compact sets in $\mathbb{R}^N$. All cases
P. V. Paramonov
International Conference on Complex Analysis Dedicated to the Memory of Andrei Gonchar and Anatoliy Vitushkin
November 23, 2023 15:00   
2. Критерии равномерной приближаемости рациональными функциями и старые задачи
P. V. Paramonov

November 8, 2022 17:15
3. Explicit forms for fundamental solutions of some second-order elliptic equations and related $C$-capacities
P. V. Paramonov, K. Yu. Fedorovskiy
Seminar on Complex Analysis (Gonchar Seminar)
January 24, 2022 17:00
4. On special Nevanlinna domains in ${\mathbf C}$
P. V. Paramonov
Seminar on Complex Analysis (Gonchar Seminar)
February 1, 2021 17:00
5. Uniform approximations of functions by solutions of second order strongly elliptic equations on compact sets in $\mathbb R^2$
P. V. Paramonov
Seminar "Complex analysis in several variables" (Vitushkin Seminar)
November 11, 2020 16:45
6. Критерии $C^1$-приближаемости функций решениями эллиптических уравнений второго порядка на компактах в $\mathbb R^N$ и связанные с ними емкости
P. V. Paramonov
International conference "8th Russian-Armenian Workshop on Mathematical Physics, Complex Analysis and Related Topics"
September 18, 2019 16:35   
7. $\mathop{\mathrm{Lip}}^m$-reflection of harmonic functions over boundaries of simple Carathéodory domains
P. V. Paramonov, K. Yu. Fedorovskiy
Seminar on Complex Analysis (Gonchar Seminar)
February 18, 2019 17:00
8. On the $\mathrm{Lip}^m$-reflection of harmonic functions with respect to closed Jordan curves on the plane
P. V. Paramonov
Seminar on Complex Analysis (Gonchar Seminar)
February 12, 2018 17:00
9. $C^m$-reflection of harmonic functions over plane Jordan curves
P. V. Paramonov
Seminar "Complex analysis in several variables" (Vitushkin Seminar)
November 22, 2017 16:45
10. Uniform approximation by harmonic functions on compact sets in ${\mathbb R}^2$
P. V. Paramonov
Seminar "Complex analysis in several variables" (Vitushkin Seminar)
April 12, 2017 16:45
11. Some new criteria for uniform approximability by harmonic functions on compact sets in $\mathbb R^2$ and harmonic capacities
P. V. Paramonov
Seminar on Complex Analysis (Gonchar Seminar)
March 6, 2017 17:00
12. Criteria for individual $C^m$-approximability of functions by solutions of second-order
P. V. Paramonov
Traditional winter session MIAN–POMI devoted to the topic "Complex analysis"
December 21, 2015 14:40   
13. Approximate partition of unity via a special system of exponents
P. V. Paramonov
Seminar "Complex analysis in several variables" (Vitushkin Seminar)
March 4, 2015 16:45
14. Uniform approximation by harmonic functions: reduction from $\mathbb R^2$ to $\mathbb R^3$
P. V. Paramonov
Seminar "Complex analysis in several variables" (Vitushkin Seminar)
November 5, 2014 16:45
15. $C^m$-приближения гармоническими функциями в ${\mathbb R}^n$
P. V. Paramonov
One-day conference "Complex Analysis and Geometry" dedicated to the memory of A. G. Vituskin
October 7, 2014 10:30   
16. Lipschitz subharmonic extensions of Walsh type: necessary conditions
P. V. Paramonov
Seminar on Complex Analysis (Gonchar Seminar)
May 19, 2014 18:00
17. Smooth subharmonic extensions of Runge and Walsh types on open Riemann surfaces
P. V. Paramonov
Seminar "Complex analysis in several variables" (Vitushkin Seminar)
March 5, 2014 16:45
18. Criteria for $C^m$ -approximability by bianalytic functions on plane compact sets
P. V. Paramonov
Seminar on Complex Analysis (Gonchar Seminar)
February 10, 2014 18:00
19. Smooth subharmonic extensions of Runge and Walsh types on open Riemann surfaces
P. V. Paramonov
Seminar on Complex Analysis (Gonchar Seminar)
January 20, 2014 18:00
20. $\mathbb C^m$-subharmonic extension of Runge from closed to open sets in $\mathbb R^n$
P. V. Paramonov
Seminar on Complex Analysis (Gonchar Seminar)
October 17, 2011 18:00
21. $C^m$-extension of subharmonic functions
P. V. Paramonov
Seminar "Complex analysis in several variables" (Vitushkin Seminar)
October 5, 2011 16:45
22. On uniform approximation by harmonic functions on compact sets in $\mathbb R^3$
P. V. Paramonov
Seminar on Complex Analysis (Gonchar Seminar)
March 28, 2011 18:00
23. $C^m$-extension of subharmonic functions
P. V. Paramonov
Seminar on Complex Analysis (Gonchar Seminar)
February 15, 2010 18:00

Organisations
 
  Contact us:
 Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024