Trudy Matematicheskogo Instituta imeni V.A. Steklova
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Mat. Inst. Steklova:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Matematicheskogo Instituta imeni V.A. Steklova, 2012, Volume 279, Pages 219–226 (Mi tm3435)  

This article is cited in 3 scientific papers (total in 3 papers)

$C^m$-subharmonic extension of Runge type from closed to open subsets of $\mathbb R^n$

A. Boivina, P. M. Gauthierb, P. V. Paramonovc

a Department of Mathematics, University of Western Ontario, London, Ontario, Canada
b Département de mathématiques et de statistique, Université de Montréal, Montréal (Québec), Canada
c Faculty of Mechanics and Mathematics, Moscow State University, Moscow, Russia
Full-text PDF (203 kB) Citations (3)
References:
Abstract: We consider several settings for $C^m$-subharmonic extension and $C^m$-harmonic approximation problems of Runge type in Euclidean domains.
Received in January 2012
English version:
Proceedings of the Steklov Institute of Mathematics, 2012, Volume 279, Pages 207–214
DOI: https://doi.org/10.1134/S0081543812080147
Bibliographic databases:
Document Type: Article
UDC: 517.574
Language: English
Citation: A. Boivin, P. M. Gauthier, P. V. Paramonov, “$C^m$-subharmonic extension of Runge type from closed to open subsets of $\mathbb R^n$”, Analytic and geometric issues of complex analysis, Collected papers, Trudy Mat. Inst. Steklova, 279, MAIK Nauka/Interperiodica, Moscow, 2012, 219–226; Proc. Steklov Inst. Math., 279 (2012), 207–214
Citation in format AMSBIB
\Bibitem{BoiGauPar12}
\by A.~Boivin, P.~M.~Gauthier, P.~V.~Paramonov
\paper $C^m$-subharmonic extension of Runge type from closed to open subsets of $\mathbb R^n$
\inbook Analytic and geometric issues of complex analysis
\bookinfo Collected papers
\serial Trudy Mat. Inst. Steklova
\yr 2012
\vol 279
\pages 219--226
\publ MAIK Nauka/Interperiodica
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/tm3435}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3086766}
\elib{https://elibrary.ru/item.asp?id=18447455}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2012
\vol 279
\pages 207--214
\crossref{https://doi.org/10.1134/S0081543812080147}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000314063000014}
Linking options:
  • https://www.mathnet.ru/eng/tm3435
  • https://www.mathnet.ru/eng/tm/v279/p219
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Труды Математического института имени В. А. Стеклова Proceedings of the Steklov Institute of Mathematics
    Statistics & downloads:
    Abstract page:296
    Full-text PDF :62
    References:68
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024