Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 1998, Volume 189, Issue 4, Pages 481–502
DOI: https://doi.org/10.1070/SM1998v189n04ABEH000303
(Mi sm303)
 

This article is cited in 12 scientific papers (total in 12 papers)

Approximation by meromorphic and entire solutions of elliptic equations in Banach spaces of distributions

A. Boivina, P. V. Paramonovb

a University of Western Ontario, Department of Mathematics
b M. V. Lomonosov Moscow State University
References:
Abstract: For a homogeneous elliptic partial differential operator $L$ with constant coefficients and a class of functions (jet-distributions) defined on a closed, not necessarily compact, subset of $\mathbb R^n$ and belonging locally to a Banach space $V$, the approximation in the norm of $V$ of functions in this class by entire and meromorphic solutions of the equation $Lu=0$ is considered. Theorems of Runge, Mergelyan, Roth, and Arakelyan type are established for a wide class of Banach spaces $V$ and operators $L$ they encompass most of the previously considered generalizations of these theorems but also include new results.
Received: 23.06.1997
Bibliographic databases:
UDC: 517.538.5+517.956.2
MSC: 30E10, 35Jxx
Language: English
Original paper language: Russian
Citation: A. Boivin, P. V. Paramonov, “Approximation by meromorphic and entire solutions of elliptic equations in Banach spaces of distributions”, Sb. Math., 189:4 (1998), 481–502
Citation in format AMSBIB
\Bibitem{BoiPar98}
\by A.~Boivin, P.~V.~Paramonov
\paper Approximation by meromorphic and entire solutions of elliptic equations in Banach spaces of distributions
\jour Sb. Math.
\yr 1998
\vol 189
\issue 4
\pages 481--502
\mathnet{http://mi.mathnet.ru//eng/sm303}
\crossref{https://doi.org/10.1070/SM1998v189n04ABEH000303}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1632406}
\zmath{https://zbmath.org/?q=an:0915.30033}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000074678200008}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-0032395758}
Linking options:
  • https://www.mathnet.ru/eng/sm303
  • https://doi.org/10.1070/SM1998v189n04ABEH000303
  • https://www.mathnet.ru/eng/sm/v189/i4/p3
  • This publication is cited in the following 12 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник - 1992–2005 Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:469
    Russian version PDF:144
    English version PDF:24
    References:52
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024