Izvestiya: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya: Mathematics, 2021, Volume 85, Issue 3, Pages 483–505
DOI: https://doi.org/10.1070/IM9036
(Mi im9036)
 

This article is cited in 2 scientific papers (total in 2 papers)

Criteria for $C^1$-approximability of functions on compact sets in ${\mathbb{R}}^N$, $N\geqslant 3$, by solutions of second-order homogeneous elliptic equations

P. V. Paramonovab

a Lomonosov Moscow State University, Faculty of Mechanics and Mathematics
b Saint Petersburg State University
References:
Abstract: We obtain capacitive criteria for the approximability of individual functions by solutions of second-order homogeneous elliptic equations with constant complex coefficients in the norm of a Whitney-type $C^1$-space on a compact set in $\mathbb{R}^N$, $N \geqslant 3$. The case $N=2$ was studied in a recent paper by the author and Tolsa. For $C^1$-approximations by harmonic functions (with any $N$), weaker criteria were earlier found by the author. We establish some metric properties of the capacities considered.
Keywords: $C^1$-approximation, second-order elliptic equation, Vitushkin's localization operator, $\mathcal{L}C^1$-capacity, $L$-oscillation, $p$-dimensional Hausdorff content, semi-additivity problem.
Funding agency Grant number
Russian Science Foundation 17-11-01064-П
This paper was written with the support of the Russian Science Foundation (grant no. 17-11-01064-P).
Received: 05.06.2020
Revised: 09.06.2020
Bibliographic databases:
Document Type: Article
UDC: 517.518.8+517.57+517.956.22
Language: English
Original paper language: Russian
Citation: P. V. Paramonov, “Criteria for $C^1$-approximability of functions on compact sets in ${\mathbb{R}}^N$, $N\geqslant 3$, by solutions of second-order homogeneous elliptic equations”, Izv. Math., 85:3 (2021), 483–505
Citation in format AMSBIB
\Bibitem{Par21}
\by P.~V.~Paramonov
\paper Criteria for $C^1$-approximability of functions on compact sets in~${\mathbb{R}}^N$, $N\geqslant 3$, by solutions of~second-order homogeneous elliptic equations
\jour Izv. Math.
\yr 2021
\vol 85
\issue 3
\pages 483--505
\mathnet{http://mi.mathnet.ru//eng/im9036}
\crossref{https://doi.org/10.1070/IM9036}
\zmath{https://zbmath.org/?q=an:1469.35099}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2021IzMat..85..483P}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000671432900001}
\elib{https://elibrary.ru/item.asp?id=46907096}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85110665245}
Linking options:
  • https://www.mathnet.ru/eng/im9036
  • https://doi.org/10.1070/IM9036
  • https://www.mathnet.ru/eng/im/v85/i3/p154
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
    Statistics & downloads:
    Abstract page:277
    Russian version PDF:42
    English version PDF:29
    Russian version HTML:110
    References:26
    First page:11
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024