Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 1995, Volume 186, Issue 9, Pages 1325–1340
DOI: https://doi.org/10.1070/SM1995v186n09ABEH000070
(Mi sm70)
 

This article is cited in 20 scientific papers (total in 20 papers)

Some new criteria for uniform approximability of functions by rational fractions

P. V. Paramonov

M. V. Lomonosov Moscow State University, Faculty of Mechanics and Mathematics
References:
Abstract: In this paper Vitushkin's localization scheme for uniform rational approximation of functions is further improved. Using this result new criteria for the approximability of functions by rational fractions in the uniform and Holder metrics on compact subsets of C are obtained.
Received: 08.12.1994
Bibliographic databases:
UDC: 517.5
MSC: 30E10
Language: English
Original paper language: Russian
Citation: P. V. Paramonov, “Some new criteria for uniform approximability of functions by rational fractions”, Sb. Math., 186:9 (1995), 1325–1340
Citation in format AMSBIB
\Bibitem{Par95}
\by P.~V.~Paramonov
\paper Some new criteria for uniform approximability of functions by rational fractions
\jour Sb. Math.
\yr 1995
\vol 186
\issue 9
\pages 1325--1340
\mathnet{http://mi.mathnet.ru/eng/sm70}
\crossref{https://doi.org/10.1070/SM1995v186n09ABEH000070}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1360189}
\zmath{https://zbmath.org/?q=an:0947.41011}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1995TX11300006}
Linking options:
  • https://www.mathnet.ru/eng/sm70
  • https://doi.org/10.1070/SM1995v186n09ABEH000070
  • https://www.mathnet.ru/eng/sm/v186/i9/p97
  • This publication is cited in the following 20 articles:
    1. M. Ya. Mazalov, P. V. Paramonov, K. Yu. Fedorovskiy, “Criteria for $C^m$-approximability of functions by solutions of homogeneous second-order elliptic equations on compact subsets of $\mathbb{R}^N$ and related capacities”, Russian Math. Surveys, 79:5 (2024), 847–917  mathnet  crossref  crossref  mathscinet  adsnasa  isi
    2. Liming Yang, “Invertibility in weak-star closed algebras of analytic functions”, Journal of Functional Analysis, 285:11 (2023), 110143  crossref
    3. Liming Yang, “Cauchy transform and uniform approximation by polynomial modules”, Journal of Mathematical Analysis and Applications, 523:1 (2023), 127004  crossref
    4. M. Ya. Mazalov, “Uniform approximation of functions by solutions of second order homogeneous strongly elliptic equations on compact sets in ${\mathbb{R}}^2$”, Izv. Math., 85:3 (2021), 421–456  mathnet  crossref  crossref  zmath  adsnasa  isi
    5. P. V. Paramonov, “Criteria for $C^1$-approximability of functions on compact sets in ${\mathbb{R}}^N$, $N\geqslant 3$, by solutions of second-order homogeneous elliptic equations”, Izv. Math., 85:3 (2021), 483–505  mathnet  crossref  crossref  zmath  adsnasa  isi  elib
    6. M. Ya. Mazalov, “Approximation by polyanalytic functions in Hölder spaces”, St. Petersburg Math. J., 33:5 (2022), 829–848  mathnet  crossref
    7. M. Ya. Mazalov, “A criterion for uniform approximability of individual functions by solutions of second-order homogeneous elliptic equations with constant complex coefficients”, Sb. Math., 211:9 (2020), 1267–1309  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    8. Paramonov P.V. Tolsa X., “On C-1-Approximability of Functions By Solutions of Second Order Elliptic Equations on Plane Compact Sets and C-Analytic Capacity”, Anal. Math. Phys., 9:3 (2019), 1133–1161  crossref  mathscinet  zmath  isi
    9. P. V. Paramonov, “Criteria for the individual $C^m$-approximability of functions on compact subsets of $\mathbb R^N$ by solutions of second-order homogeneous elliptic equations”, Sb. Math., 209:6 (2018), 857–870  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    10. P.M. Gauthier, P.V. Paramonov, F. Sharifi, “Meromorphic tangential approximation on the boundary of closed sets in Riemann surfaces”, Journal of Approximation Theory, 232 (2018), 1  crossref
    11. P. V. Paramonov, “New Criteria for Uniform Approximability by Harmonic Functions on Compact Sets in $\mathbb R^2$”, Proc. Steklov Inst. Math., 298 (2017), 201–211  mathnet  crossref  crossref  isi  elib
    12. M. Ya. Mazalov, P. V. Paramonov, “Criteria for $C^m$-approximability by bianalytic functions on planar compact sets”, Sb. Math., 206:2 (2015), 242–281  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    13. M. Ya. Mazalov, “A criterion for approximability by harmonic functions in Lipschitz spaces”, J. Math. Sci. (N. Y.), 194:6 (2013), 678–692  mathnet  crossref  mathscinet
    14. M. Ya. Mazalov, P. V. Paramonov, K. Yu. Fedorovskiy, “Conditions for $C^m$-approximability of functions by solutions of elliptic equations”, Russian Math. Surveys, 67:6 (2012), 1023–1068  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib  elib
    15. M. Ya. Mazalov, “Criterion of uniform approximability by harmonic functions on compact sets in $\mathbb R^3$”, Proc. Steklov Inst. Math., 279 (2012), 110–154  mathnet  crossref  mathscinet  isi  elib
    16. M. Ya. Mazalov, “Uniform approximation problem for harmonic functions”, St. Petersburg Math. J., 23:4 (2012), 731–759  mathnet  crossref  mathscinet  zmath  isi  elib  elib
    17. M. Ya. Mazalov, “A criterion for uniform approximability on arbitrary compact sets for solutions of elliptic equations”, Sb. Math., 199:1 (2008), 13–44  mathnet  crossref  crossref  mathscinet  zmath  isi  elib  elib
    18. M. Ya. Mazalov, “Uniform approximations by bianalytic functions on arbitrary compact subsets of $\mathbb C$”, Sb. Math., 195:5 (2004), 687–709  mathnet  crossref  crossref  mathscinet  zmath  isi
    19. J. Verdera, M. S. Mel'nikov, P. V. Paramonov, “$C^1$-approximation and extension of subharmonic functions”, Sb. Math., 192:4 (2001), 515–535  mathnet  crossref  crossref  mathscinet  zmath  isi
    20. M. Ya. Mazalov, “Uniform Approximation of Functions Continuous on a Compact Subset of $\mathbb C$ and Analytic in Its Interior by Functions Bianalytic in Its Neighborhoods”, Math. Notes, 69:2 (2001), 216–231  mathnet  crossref  crossref  mathscinet  zmath  isi  elib
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник - 1992–2005 Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:361
    Russian version PDF:102
    English version PDF:37
    References:56
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025