Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2015, Volume 206, Issue 1, Pages 3–23
DOI: https://doi.org/10.1070/SM2015v206n01ABEH004443
(Mi sm8345)
 

This article is cited in 1 scientific paper (total in 1 paper)

Runge- and Walsh-type extensions of smooth subharmonic functions on open Riemann surfaces

A. Boivina, P. M. Gauthierb, P. V. Paramonovc

a University of Western Ontario
b Université de Montréal
c M. V. Lomonosov Moscow State University, Faculty of Mechanics and Mathematics
References:
Abstract: In this paper we study several settings of the $C^m$-subharmonic extension problem on open Riemann surfaces. The problem is completely solved (for all $m\in[0,+\infty)$) for so-called Runge-type extensions. Several (in some sense sharp) sufficient conditions and counterexamples are found also for Walsh-type extensions. As applications, these results allow us to prove the existence of $C^m$-subharmonic extensions, automorphic with respect to some appropriate groups of automorphisms of an open Riemann surface.
Bibliography: 22 titles.
Keywords: subharmonic function, Riemann surface, Green function, localization operator, automorphism group.
Funding agency Grant number
Natural Sciences and Engineering Research Council of Canada (NSERC)
Ministry of Education and Science of the Russian Federation НШ-2900.2014.1
All the authors were partially supported by grants from NSERC (Canada). The research of the third author was also partially supported by the Programme for the Support of Leading Scientific Schools of the Russian Federation (grant no. НШ-2900.2014.1).
Received: 11.02.2014 and 26.06.2014
Bibliographic databases:
Document Type: Article
UDC: 517.574+517.545
MSC: 31A05, 30F99
Language: English
Original paper language: Russian
Citation: A. Boivin, P. M. Gauthier, P. V. Paramonov, “Runge- and Walsh-type extensions of smooth subharmonic functions on open Riemann surfaces”, Sb. Math., 206:1 (2015), 3–23
Citation in format AMSBIB
\Bibitem{BoiGauPar15}
\by A.~Boivin, P.~M.~Gauthier, P.~V.~Paramonov
\paper Runge- and Walsh-type extensions of smooth subharmonic functions on open Riemann surfaces
\jour Sb. Math.
\yr 2015
\vol 206
\issue 1
\pages 3--23
\mathnet{http://mi.mathnet.ru//eng/sm8345}
\crossref{https://doi.org/10.1070/SM2015v206n01ABEH004443}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3354959}
\zmath{https://zbmath.org/?q=an:1314.31001}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2015SbMat.206....3B}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000351527000002}
\elib{https://elibrary.ru/item.asp?id=23421595}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84925272621}
Linking options:
  • https://www.mathnet.ru/eng/sm8345
  • https://doi.org/10.1070/SM2015v206n01ABEH004443
  • https://www.mathnet.ru/eng/sm/v206/i1/p5
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:569
    Russian version PDF:182
    English version PDF:18
    References:74
    First page:29
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024