Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2018, Volume 209, Issue 6, Pages 857–870
DOI: https://doi.org/10.1070/SM8967
(Mi sm8967)
 

This article is cited in 7 scientific papers (total in 7 papers)

Criteria for the individual $C^m$-approximability of functions on compact subsets of $\mathbb R^N$ by solutions of second-order homogeneous elliptic equations

P. V. Paramonovab

a Faculty of Mechanics and Mathematicsб Lomonosov Moscow State University
b Saint Petersburg State University
References:
Abstract: Criteria for the individual approximability of functions by solutions of second-order homogeneous elliptic equations with constant complex coefficients in the norms of Whitney-type $C^m$-spaces on compact subsets of $\mathbb R^N$, $N\in\{2,3,\dots\}$, are obtained for $m \in (0, 1) \cup (0,2)$. These results, which are analogues of Vitushkin's celebrated criteria for uniform rational approximation, were previously established by Mazalov for harmonic approximations (for $m \in (0, 1)$ and $N \geqslant 3$) and by Mazalov and Paramonov for bi-analytic approximation.
Bibliography: 11 titles.
Keywords: $C^m$-approximation by solutions of homogeneous elliptic equations, Vitushkin-type localization operator, $C^m$-invariance of Calderón-Zygmund operators, $p$-dimensional Hausdorff content, harmonic $C^m$-capacity, $L$-oscillation.
Funding agency Grant number
Russian Science Foundation 17-11-01064
The work was supported by the Russian Science Foundation under grant no. 17-11-01064.
Received: 16.05.2017
Bibliographic databases:
Document Type: Article
UDC: 517.518.8+517.57+517.956.22
MSC: Primary 41A30; Secondary 35J15, 42B20
Language: English
Original paper language: Russian
Citation: P. V. Paramonov, “Criteria for the individual $C^m$-approximability of functions on compact subsets of $\mathbb R^N$ by solutions of second-order homogeneous elliptic equations”, Sb. Math., 209:6 (2018), 857–870
Citation in format AMSBIB
\Bibitem{Par18}
\by P.~V.~Paramonov
\paper Criteria for the individual $C^m$-approximability of~functions on compact subsets of~$\mathbb R^N$ by solutions of second-order homogeneous elliptic equations
\jour Sb. Math.
\yr 2018
\vol 209
\issue 6
\pages 857--870
\mathnet{http://mi.mathnet.ru//eng/sm8967}
\crossref{https://doi.org/10.1070/SM8967}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3807908}
\zmath{https://zbmath.org/?q=an:1400.41013}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2018SbMat.209..857P}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000441840600006}
\elib{https://elibrary.ru/item.asp?id=34940687}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85052392219}
Linking options:
  • https://www.mathnet.ru/eng/sm8967
  • https://doi.org/10.1070/SM8967
  • https://www.mathnet.ru/eng/sm/v209/i6/p83
  • This publication is cited in the following 7 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:372
    Russian version PDF:35
    English version PDF:15
    References:41
    First page:11
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024