Persons
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
 
Kokurin, Mikhail Yur'evich

Statistics Math-Net.Ru
Total publications: 89
Scientific articles: 89
Presentations: 1

Number of views:
This page:3842
Abstract pages:20832
Full texts:6536
References:3019
Professor
Doctor of physico-mathematical sciences (1997)
Speciality: 01.01.07 (Computing mathematics)
E-mail:
Keywords: ill-posed problems, iterative methods, regularization, convergence, stability, inverse problems.
   
Main publications:
  • Bakushinskii A. B., Kokurin M. Yu. Iteratsionnye metody resheniya nekorrektnykh operatornykh uravnenii s gladkimi operatorami. M.: URSS, 2002.
  • Bakushinsky A., Kokurin M. Iterative Methods for Approximate Solution of Inverse Problems. Dordrecht: Springer, 2005.

https://www.mathnet.ru/eng/person19872
List of publications on Google Scholar
https://zbmath.org/authors/ai:kokurin.mihail-yu
https://mathscinet.ams.org/mathscinet/MRAuthorID/194129
https://elibrary.ru/author_items.asp?spin=7024-9686
https://www.webofscience.com/wos/author/record/A-5073-2014

Publications in Math-Net.Ru Citations
2023
1. M. Yu. Kokurin, “Quasi-solution method and global minimization of the residual functional in conditionally well-posed inverse problems”, Zh. Vychisl. Mat. Mat. Fiz., 63:5 (2023),  840–855  mathnet  elib; Comput. Math. Math. Phys., 63:5 (2023), 881–896
2022
2. M. Yu. Kokurin, “Completeness of asymmetric products of harmonic functions and uniqueness of the solution to the Lavrent'ev equation in inverse wave sounding problems”, Izv. RAN. Ser. Mat., 86:6 (2022),  101–122  mathnet  mathscinet; Izv. Math., 86:6 (2022), 1123–1142  isi  scopus 3
3. M. Yu. Kokurin, A. B. Bakushinsky, “On the achievable level of accuracy in solving abstract ill-posed problems and nonlinear operator equations in Banach space”, Izv. Vyssh. Uchebn. Zaved. Mat., 2022, no. 3,  21–27  mathnet; Russian Math. (Iz. VUZ), 66:3 (2022), 16–21
4. M. Yu. Kokurin, V. V. Klyuchev, “Uniqueness conditions and numerical approximation of the solution to M.M. Lavrentiev's integral equation”, Sib. Zh. Vychisl. Mat., 25:4 (2022),  441–458  mathnet
2021
5. A. I. Murzashev, A. P. Jumanazarov, M. Yu. Kokurin, “Energy spectrum and optical absorption of endohedral complexes Er$_{2}$C$_{2}$@C$_{90}$ based on isomers no. 21 and no. 44”, Optics and Spectroscopy, 129:9 (2021),  1111–1118  mathnet  elib; Optics and Spectroscopy, 129:12 (2021), 1279–1286 1
6. M. Yu. Kokurin, A. E. Nedopekin, “Iteratively regularized Gauss–Newton method in the inverse problem of ionospheric radiosonding”, Sib. Èlektron. Mat. Izv., 18:2 (2021),  1153–1164  mathnet  isi
7. A. I. Kozlov, M. Yu. Kokurin, “On Lavrent'ev-type integral equations in coefficient inverse problems for wave equations”, Zh. Vychisl. Mat. Mat. Fiz., 61:9 (2021),  1492–1507  mathnet  elib; Comput. Math. Math. Phys., 61:9 (2021), 1470–1484  isi  scopus 9
2020
8. M. Yu. Kokurin, “On the completeness of products of solutions to the Helmholtz equation”, Izv. Vyssh. Uchebn. Zaved. Mat., 2020, no. 6,  30–35  mathnet; Russian Math. (Iz. VUZ), 64:6 (2020), 24–28  isi  scopus 3
9. A. I. Murzashev, M. Yu. Kokurin, S. K. Paĭmerov, “Electronic structure and optical absorption of fullerenes as strong related systems using the C$_{96}(C_{2})$ molecule as an example”, Optics and Spectroscopy, 128:9 (2020),  1238–1243  mathnet  elib; Optics and Spectroscopy, 128:9 (2020), 1350–1354 2
10. A. B. Bakushinskii, M. Yu. Kokurin, M. M. Kokurin, “Direct and converse theorems for iterative methods of solving irregular operator equations and finite difference methods for solving ill-posed Cauchy problems”, Zh. Vychisl. Mat. Mat. Fiz., 60:6 (2020),  939–962  mathnet  elib; Comput. Math. Math. Phys., 60:6 (2020), 915–937  isi  scopus 5
2019
11. M. Yu. Kokurin, “Almost solubility of classes of non-linear integral equations of the first kind on cones”, Izv. RAN. Ser. Mat., 83:5 (2019),  88–106  mathnet  mathscinet  elib; Izv. Math., 83:5 (2019), 990–1007  isi  scopus 1
12. M. Yu. Kokurin, “On regularization procedures with linear accuracy estimates of approximations”, Izv. Vyssh. Uchebn. Zaved. Mat., 2019, no. 5,  30–39  mathnet; Russian Math. (Iz. VUZ), 63:5 (2019), 27–35  isi
2018
13. M. Yu. Kokurin, “On linear accuracy estimates of Tikhonov's method”, Eurasian Journal of Mathematical and Computer Applications, 6:4 (2018),  48–61  mathnet  isi  scopus
14. M. Yu. Kokurin, “On the Completeness of Products of Harmonic Functions and the Uniqueness of the Solution of the Inverse Acoustic Sounding Problem”, Mat. Zametki, 104:5 (2018),  708–716  mathnet  mathscinet  elib; Math. Notes, 104:5 (2018), 689–695  isi  scopus 15
15. M. Yu. Kokurin, “The clustering effect for stationary points of discrepancy functionals associated with conditionally well-posed inverse problems”, Sib. Zh. Vychisl. Mat., 21:4 (2018),  393–406  mathnet  elib; Num. Anal. Appl., 11:4 (2018), 311–322  isi  scopus 3
16. M. Yu. Kokurin, “Solution of ill-posed nonconvex optimization problems with accuracy proportional to the error in input data”, Zh. Vychisl. Mat. Mat. Fiz., 58:11 (2018),  1815–1828  mathnet  elib; Comput. Math. Math. Phys., 58:11 (2018), 1748–1760  isi  scopus 2
2017
17. M. Yu. Kokurin, S. I. Piskarev, M. Spreafico, “Finite-Difference Methods for Fractional Differential Equations of Order $1/2$”, Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 133 (2017),  120–129  mathnet  mathscinet  zmath; J. Math. Sci. (N. Y.), 230:6 (2018), 950–960  scopus 2
18. M. Yu. Kokurin, “Necessary and sufficient conditions for power convergence rate of approximations in Tikhonov's scheme for solving ill-posed optimization problems”, Izv. Vyssh. Uchebn. Zaved. Mat., 2017, no. 6,  60–69  mathnet; Russian Math. (Iz. VUZ), 61:6 (2017), 51–59  isi  scopus 3
19. M. Yu. Kokurin, “Convergence rate estimates for Tikhonov's scheme as applied to ill-posed nonconvex optimization problems”, Zh. Vychisl. Mat. Mat. Fiz., 57:7 (2017),  1103–1112  mathnet  elib; Comput. Math. Math. Phys., 57:7 (2017), 1101–1110  isi  scopus 3
2016
20. A. B. Bakushinskii, M. Yu. Kokurin, “Iteratively regularized Gauss–Newton method for operator equations with normally solvable derivative at the solution”, Izv. Vyssh. Uchebn. Zaved. Mat., 2016, no. 8,  3–11  mathnet; Russian Math. (Iz. VUZ), 60:8 (2016), 1–8  isi  scopus 6
21. M. Yu. Kokurin, “On the Convexity of Images of Nonlinear Integral Operators”, Mat. Zametki, 100:4 (2016),  544–552  mathnet  mathscinet  elib; Math. Notes, 100:4 (2016), 561–567  isi  scopus 2
22. M. Yu. Kokurin, “Iteratively regularized methods for irregular nonlinear operator equations with a normally solvable derivative at the solution”, Zh. Vychisl. Mat. Mat. Fiz., 56:9 (2016),  1543–1555  mathnet  elib; Comput. Math. Math. Phys., 56:9 (2016), 1523–1535  isi  scopus 6
2015
23. M. Yu. Kokurin, “Sets of Uniqueness for Harmonic and Analytic Functions and Inverse Problems for Wave Equations”, Mat. Zametki, 97:3 (2015),  397–406  mathnet  mathscinet  zmath  elib; Math. Notes, 97:3 (2015), 376–383  isi  scopus 2
24. A. B. Bakushinskii, M. Yu. Kokurin, “Iterative methods of stochastic approximation for solving non-regular nonlinear operator equations”, Zh. Vychisl. Mat. Mat. Fiz., 55:10 (2015),  1637–1645  mathnet  mathscinet  elib; Comput. Math. Math. Phys., 55:10 (2015), 1597–1605  isi  elib  scopus 2
2014
25. M. Yu. Kokurin, “Conditions of sourcewise representability and power estimates of convergence rate in Tikhonov's scheme for solving ill-posed extremal problems”, Izv. Vyssh. Uchebn. Zaved. Mat., 2014, no. 7,  72–82  mathnet; Russian Math. (Iz. VUZ), 58:7 (2014), 61–70  scopus 4
26. M. Yu. Kokurin, A. I. Kozlov, “On a posteriori approximation of a set of solutions to a system of quadratic equations with the use of the Newton method”, Sib. Zh. Vychisl. Mat., 17:1 (2014),  53–65  mathnet  mathscinet; Num. Anal. Appl., 7:1 (2014), 45–56  isi  scopus 1
27. M. Yu. Kokurin, “Convexity properties of images under nonlinear integral operators”, Mat. Sb., 205:12 (2014),  99–110  mathnet  mathscinet  zmath  elib; Sb. Math., 205:12 (2014), 1775–1786  isi  scopus 3
2013
28. M. Yu. Kokurin, “Reduction of variational inequalities with irregular operators on a ball to regular operator equations”, Izv. Vyssh. Uchebn. Zaved. Mat., 2013, no. 4,  32–41  mathnet; Russian Math. (Iz. VUZ), 57:4 (2013), 26–34  scopus 3
29. M. Yu. Kokurin, “Conditionally well-posed and generalized well-posed problems”, Zh. Vychisl. Mat. Mat. Fiz., 53:6 (2013),  857–866  mathnet  mathscinet  elib; Comput. Math. Math. Phys., 53:6 (2013), 681–690  isi  elib  scopus 13
2012
30. A. B. Bakushinskii, M. M. Kokurin, M. Yu. Kokurin, “On a complete discretization scheme for an ill-posed Cauchy problem in a Banach space”, Trudy Inst. Mat. i Mekh. UrO RAN, 18:1 (2012),  96–108  mathnet  elib; Proc. Steklov Inst. Math. (Suppl.), 280, suppl. 1 (2013), 53–65  isi  scopus 11
31. A. B. Bakushinskii, M. M. Kokurin, M. Yu. Kokurin, “On a class of finite-difference schemes for solving ill-posed Cauchy problems in Banach spaces”, Zh. Vychisl. Mat. Mat. Fiz., 52:3 (2012),  483–498  mathnet  mathscinet  zmath  elib; Comput. Math. Math. Phys., 52:3 (2012), 411–426  isi  elib  scopus 9
2011
32. M. Yu. Kokurin, “An exact penalty method for monotone variational inequalities and order optimal algorithms for finding saddle points”, Izv. Vyssh. Uchebn. Zaved. Mat., 2011, no. 8,  23–33  mathnet  mathscinet; Russian Math. (Iz. VUZ), 55:8 (2011), 19–27  scopus 3
33. M. Yu. Kokurin, “On a correlation method for studying random wave fields”, Sib. Zh. Ind. Mat., 14:4 (2011),  24–31  mathnet  mathscinet 2
34. M. Yu. Kokurin, “On an algorithmic feasibility of source conditions in iterative methods of solving irregular nonlinear equations”, Num. Meth. Prog., 12:1 (2011),  146–151  mathnet
2010
35. M. Yu. Kokurin, “The global search in the Tikhonov scheme”, Izv. Vyssh. Uchebn. Zaved. Mat., 2010, no. 12,  20–31  mathnet  mathscinet; Russian Math. (Iz. VUZ), 54:12 (2010), 17–26  scopus 12
36. A. B. Bakushinskii, M. Yu. Kokurin, V. V. Klyuchev, “Convergence rate estimation for finite-difference methods of solving the ill-posed Cauchy problem for second-order linear differential equations in a Banach space”, Num. Meth. Prog., 11:1 (2010),  25–31  mathnet 3
37. M. Yu. Kokurin, “Finite-dimensional linear approximations of solutions to general irregular nonlinear operator equations and equations with quadratic operators”, Zh. Vychisl. Mat. Mat. Fiz., 50:11 (2010),  1883–1892  mathnet; Comput. Math. Math. Phys., 50:11 (2010), 1783–1792  isi  scopus 1
38. M. Yu. Kokurin, “On the convexity of the Tikhonov functional and iteratively regularized methods for solving irregular nonlinear operator equations”, Zh. Vychisl. Mat. Mat. Fiz., 50:4 (2010),  651–664  mathnet  mathscinet; Comput. Math. Math. Phys., 50:4 (2010), 620–632  isi  scopus 18
2009
39. M. Yu. Kokurin, “On P.A. Shirokov's Curve and Theorems of Hausdorff and Dines”, Kazan. Gos. Univ. Uchen. Zap. Ser. Fiz.-Mat. Nauki, 151:4 (2009),  51–53  mathnet 1
40. V. T. Sidorova, I. I. Popov, M. Yu. Kokurin, A. I. Orlov, “A method of Cyclic Multipulse Excitation of Photon Echo Signals and Its Application”, Kazan. Gos. Univ. Uchen. Zap. Ser. Fiz.-Mat. Nauki, 151:1 (2009),  172–180  mathnet
41. M. Yu. Kokurin, “On the reduction of the nonlinear inverse problem for a plane hyperbolic equation to a linear integral equation”, Num. Meth. Prog., 10:3 (2009),  300–305  mathnet 1
42. A. I. Kozlov, M. Yu. Kokurin, “Gradient projection method for stable approximation of quasisolutions to irregular nonlinear operator equations”, Zh. Vychisl. Mat. Mat. Fiz., 49:10 (2009),  1757–1764  mathnet; Comput. Math. Math. Phys., 49:10 (2009), 1678–1685  isi  scopus 4
2008
43. M. Yu. Kokurin, “Relaxation of the distance to the solution in nonconvex smooth extremal problems”, Izv. Vyssh. Uchebn. Zaved. Mat., 2008, no. 1,  27–32  mathnet  mathscinet; Russian Math. (Iz. VUZ), 52:1 (2008), 24–29
44. M. Yu. Kokurin, S. K. Paĭmerov, “Inverse coefficient problem for a wave equation in a bounded domain”, Zh. Vychisl. Mat. Mat. Fiz., 48:1 (2008),  115–126  mathnet  mathscinet  zmath  elib; Comput. Math. Math. Phys., 48:1 (2008), 109–120  isi  elib  scopus 10
2007
45. M. Yu. Kokurin, “Approximation of solutions to nonregular nonlinear equations by attractors of dynamic systems in a Banach space”, Izv. Vyssh. Uchebn. Zaved. Mat., 2007, no. 1,  23–33  mathnet  mathscinet  zmath  elib; Russian Math. (Iz. VUZ), 51:1 (2007), 19–29
46. M. Yu. Kokurin, O. V. Karabanova, “A finite-dimensional regularized gradient method for solving irregular nonlinear operator equations”, Num. Meth. Prog., 8:1 (2007),  88–94  mathnet
47. M. Yu. Kokurin, “Stable approximation of solutions to irregular nonlinear operator equations in a Hilbert space under large noise”, Zh. Vychisl. Mat. Mat. Fiz., 47:1 (2007),  3–10  mathnet  mathscinet  zmath; Comput. Math. Math. Phys., 47:1 (2007), 1–8  scopus 1
2006
48. A. B. Bakushinskii, M. Yu. Kokurin, V. V. Klyuchev, “A rate of convergence and error estimates for difference methods used to approximate solutions to ill-posed Cauchy problems in a Banach space”, Num. Meth. Prog., 7:2 (2006),  163–171  mathnet 7
2005
49. M. Yu. Kokurin, “On a stable approximation of solutions of nonsmooth operator equations”, Izv. Vyssh. Uchebn. Zaved. Mat., 2005, no. 3,  32–36  mathnet  mathscinet  zmath; Russian Math. (Iz. VUZ), 49:3 (2005), 30–34
2004
50. M. Yu. Kokurin, V. V. Klyuchev, “Logarithmic estimates for the rate of convergence of methods for solving the inverse Cauchy problem in a Banach space”, Izv. Vyssh. Uchebn. Zaved. Mat., 2004, no. 3,  73–75  mathnet  mathscinet  zmath; Russian Math. (Iz. VUZ), 48:3 (2004), 67–69 1
51. A. B. Bakushinskii, M. Yu. Kokurin, “Continuous methods for stable approximation of solutions to nonlinear equations in the Banach space based on the regularized Newton–Kantarovich scheme”, Sib. Zh. Vychisl. Mat., 7:1 (2004),  1–12  mathnet  zmath 1
52. M. Yu. Kokurin, “Continuous methods of stable approximation of solutions to non-linear equations in Hilbert space based on a regularized Gauss–Newton scheme”, Zh. Vychisl. Mat. Mat. Fiz., 44:1 (2004),  8–17  mathnet  mathscinet  zmath; Comput. Math. Math. Phys., 44:1 (2004), 6–15 1
2003
53. M. Yu. Kokurin, O. V. Karabanova, “Regularized projection methods for solving linear operator equations of the first kind in a Banach space”, Izv. Vyssh. Uchebn. Zaved. Mat., 2003, no. 7,  35–44  mathnet  mathscinet  zmath; Russian Math. (Iz. VUZ), 47:7 (2003), 34–55
54. A. B. Bakushinskii, M. Yu. Kokurin, A. I. Kozlov, “Stable gradient design method for inverse problem of gravimetry”, Matem. Mod., 15:7 (2003),  37–45  mathnet  mathscinet  zmath
55. M. Yu. Kokurin, “Approximation of solutions to irregular equations and attractors of nonlinear dynamical systems in Hilbert spaces”, Num. Meth. Prog., 4:1 (2003),  207–215  mathnet
56. A. B. Bakushinskii, A. I. Kozlov, M. Yu. Kokurin, “On some inverse problem for a three-dimensional wave equation”, Zh. Vychisl. Mat. Mat. Fiz., 43:8 (2003),  1201–1209  mathnet  mathscinet  zmath; Comput. Math. Math. Phys., 43:8 (2003), 1149–1158 12
2002
57. M. Yu. Kokurin, “Source representability and estimates for the rate of convergence of methods for the regularization of linear equations in a Banach space. II”, Izv. Vyssh. Uchebn. Zaved. Mat., 2002, no. 3,  22–31  mathnet  mathscinet  zmath; Russian Math. (Iz. VUZ), 46:3 (2002), 19–27 1
58. M. Yu. Kokurin, N. A. Yusupova, “On necessary and sufficient conditions for the slow convergence of methods for solving linear ill-posed problems”, Izv. Vyssh. Uchebn. Zaved. Mat., 2002, no. 2,  81–84  mathnet  mathscinet  zmath; Russian Math. (Iz. VUZ), 46:2 (2002), 78–81 2
59. M. Yu. Kokurin, V. V. Klyuchev, “Necessary conditions for a given convergence rate of iterative methods for solution of linear ill-posed operator equations in a Banach space”, Sib. Zh. Vychisl. Mat., 5:4 (2002),  295–310  mathnet  zmath
60. A. B. Bakushinskii, M. Yu. Kokurin, N. A. Yusupova, “Iterative Newton-type methods with projecting for solution of nonlinear ill-posed operator equations”, Sib. Zh. Vychisl. Mat., 5:2 (2002),  101–111  mathnet  zmath 2
61. M. Yu. Kokurin, V. V. Klyuchev, “Necessary conditions for the power convergence rate of a class of iterative processes for nonlinear ill-posed operator equations in Banach spaces”, Num. Meth. Prog., 3:1 (2002),  93–109  mathnet
62. M. Yu. Kokurin, O. V. Karabanova, “Iterative processes for nonlinear ill-posed operator equations in Banach spaces on the basis of finite-dimensional regularization of the Newton-Kantorovich method”, Num. Meth. Prog., 3:1 (2002),  40–51  mathnet
63. O. V. Karabanova, A. I. Kozlov, M. Yu. Kokurin, “Stable finite-dimensional iterative processes for solving nonlinear ill-posed operator equations”, Zh. Vychisl. Mat. Mat. Fiz., 42:8 (2002),  1115–1128  mathnet  mathscinet  zmath; Comput. Math. Math. Phys., 42:8 (2002), 1073–1085 4
2001
64. M. Yu. Kokurin, “Source representability and estimates for the rate of convergence of methods for the regularization of linear equations in a Banach space. I”, Izv. Vyssh. Uchebn. Zaved. Mat., 2001, no. 8,  51–59  mathnet  mathscinet  zmath; Russian Math. (Iz. VUZ), 45:8 (2001), 49–57 5
65. M. Yu. Kokurin, N. A. Yusupova, “On necessary conditions for the qualified convergence of methods for solving linear ill-posed problems”, Izv. Vyssh. Uchebn. Zaved. Mat., 2001, no. 2,  39–47  mathnet  mathscinet  zmath; Russian Math. (Iz. VUZ), 45:2 (2001), 36–44 4
66. A. B. Bakushinskii, M. Yu. Kokurin, N. A. Yusupova, “On iterative methods of gradient type for solving nonlinear ill-posed equations”, Sib. Zh. Vychisl. Mat., 4:4 (2001),  317–329  mathnet  zmath 2
67. A. B. Bakushinskii, M. Yu. Kokurin, “Conditions of sourcewise representation and rates of convergence of methods for solving ill-posed operator equations. Part II”, Num. Meth. Prog., 2:1 (2001),  65–91  mathnet
2000
68. A. B. Bakushinskii, M. Yu. Kokurin, “Conditions of sourcewise representation and rates of convergence of methods for solving ill-posed operator equations. Part I”, Num. Meth. Prog., 1:1 (2000),  62–82  mathnet 2
69. A. B. Bakushinskii, M. Yu. Kokurin, N. A. Yusupova, “Necessary conditions for the convergence of iterative methods for solving irregular nonlinear operator equations”, Zh. Vychisl. Mat. Mat. Fiz., 40:7 (2000),  986–996  mathnet  mathscinet  zmath; Comput. Math. Math. Phys., 40:7 (2000), 945–954 5
70. M. Yu. Kokurin, N. A. Yusupova, “Nondegenerate estimates for the convergence rate of iterative methods for ill-posed nonlinear operator equations”, Zh. Vychisl. Mat. Mat. Fiz., 40:6 (2000),  832–837  mathnet  mathscinet  zmath; Comput. Math. Math. Phys., 40:6 (2000), 793–798 5
1999
71. A. B. Bakushinskii, M. Yu. Kokurin, “Iterative regularization algorithms for monotone variational inequalities”, Zh. Vychisl. Mat. Mat. Fiz., 39:4 (1999),  553–560  mathnet  mathscinet  zmath  elib; Comput. Math. Math. Phys., 39:4 (1999), 525–532 1
1997
72. M. Yu. Kokurin, “On the justification of the Galerkin method for noncoercive elliptic equations with a monotone nonlinearity”, Differ. Uravn., 33:3 (1997),  425–427  mathnet  mathscinet; Differ. Equ., 33:3 (1997), 428–431 1
73. M. Yu. Kokurin, “On the regularization of singular optimal control problems for linear equations with selfadjoint operators”, Differ. Uravn., 33:2 (1997),  249–256  mathnet  mathscinet; Differ. Equ., 33:2 (1997), 249–256
74. M. Yu. Kokurin, “On the regularization of problems of the optimal control of solutions of some ill-posed variational inequalities of monotone type”, Sibirsk. Mat. Zh., 38:1 (1997),  100–108  mathnet  mathscinet  zmath; Siberian Math. J., 38:1 (1997), 84–91  isi 1
1996
75. M. Yu. Kokurin, “On the discrete regularization of nonlinear equations and optimal control problems by singular systems”, Izv. Vyssh. Uchebn. Zaved. Mat., 1996, no. 12,  42–53  mathnet  mathscinet  zmath; Russian Math. (Iz. VUZ), 40:12 (1996), 39–50 1
1995
76. M. Yu. Kokurin, “On the control of the solvability of convex variational problems”, Izv. Vyssh. Uchebn. Zaved. Mat., 1995, no. 12,  43–53  mathnet  mathscinet  zmath; Russian Math. (Iz. VUZ), 39:12 (1995), 40–50
77. M. Yu. Kokurin, “Asymptotic behavior of periodic solutions of parabolic equations with weakly nonlinear perturbation”, Mat. Zametki, 57:3 (1995),  369–376  mathnet  mathscinet  zmath; Math. Notes, 57:3 (1995), 261–265  isi 1
78. M. Yu. Kokurin, “On a certain class of operator equations with small parameter and regularization of ill-posed problems”, Sibirsk. Mat. Zh., 36:4 (1995),  842–850  mathnet  mathscinet  zmath; Siberian Math. J., 36:4 (1995), 727–734  isi 1
1994
79. M. Yu. Kokurin, “On the regularization and correction of noncoercive nonlinear equations of monotone type”, Differ. Uravn., 30:8 (1994),  1374–1383  mathnet  mathscinet; Differ. Equ., 30:8 (1994), 1274–1283
80. M. Yu. Kokurin, “On the limit passage in variational problems of plasticity theory”, Izv. Vyssh. Uchebn. Zaved. Mat., 1994, no. 12,  60–69  mathnet  mathscinet  zmath; Russian Math. (Iz. VUZ), 38:12 (1994), 57–65
1993
81. M. Yu. Kokurin, “Asymptotic behavior of periodic solutions of a class of operator-differential equations”, Differ. Uravn., 29:8 (1993),  1400–1407  mathnet  mathscinet; Differ. Equ., 29:8 (1993), 1214–1220 1
82. M. Yu. Kokurin, “A method for the operator regularization of equations of the first kind that minimize the residua”, Izv. Vyssh. Uchebn. Zaved. Mat., 1993, no. 12,  59–69  mathnet  mathscinet  zmath; Russian Math. (Iz. VUZ), 37:12 (1993), 59–69 1
1992
83. M. Yu. Kokurin, “On the use of regularization for correcting monotone variational inequalities that are given approximately”, Izv. Vyssh. Uchebn. Zaved. Mat., 1992, no. 2,  49–56  mathnet  mathscinet  zmath; Russian Math. (Iz. VUZ), 36:2 (1992), 49–56 2
1991
84. M. Yu. Kokurin, “An approach to the correction of incompatible variational inequalities”, Izv. Vyssh. Uchebn. Zaved. Mat., 1991, no. 4,  16–24  mathnet  mathscinet  zmath; Soviet Math. (Iz. VUZ), 35:4 (1991), 15–22
1990
85. V. S. Izhutkin, M. Yu. Kokurin, “Reduced-direction methods with feasible points in nonlinear programming”, Zh. Vychisl. Mat. Mat. Fiz., 30:2 (1990),  217–230  mathnet  mathscinet  zmath; U.S.S.R. Comput. Math. Math. Phys., 30:1 (1990), 159–169 5
1988
86. V. S. Izhutkin, M. Yu. Kokurin, “Reduced-direction methods for the nonlinear programming problem”, Zh. Vychisl. Mat. Mat. Fiz., 28:12 (1988),  1799–1814  mathnet  mathscinet  zmath; U.S.S.R. Comput. Math. Math. Phys., 28:6 (1988), 135–145 5
1986
87. V. S. Izhutkin, M. Yu. Kokurin, “A hybrid method of nonlinear programming using curvilinear descent”, Izv. Vyssh. Uchebn. Zaved. Mat., 1986, no. 2,  61–64  mathnet  mathscinet  zmath; Soviet Math. (Iz. VUZ), 30:2 (1986), 87–91
1983
88. V. S. Izhutkin, M. Yu. Kokurin, “The rate of convergence of the projection method with a choice of step by subdivision for solution of a convex programming problem”, Izv. Vyssh. Uchebn. Zaved. Mat., 1983, no. 6,  53–55  mathnet  mathscinet  zmath; Soviet Math. (Iz. VUZ), 27:6 (1983), 65–68
89. V. S. Izhutkin, M. Yu. Kokurin, “The projection method in a variable metric for a convex programming problem”, Izv. Vyssh. Uchebn. Zaved. Mat., 1983, no. 5,  78–80  mathnet  mathscinet  zmath; Soviet Math. (Iz. VUZ), 27:5 (1983), 98–102

Presentations in Math-Net.Ru
1. О глобальной минимизации функционала невязки условно корректных обратных задач
М. Ю. Кокурин
International Scientific Conference KOLMOGOROV READINGS – IX. General Control Problems and their Applications (GCP–2020), dedicated to the 70-th birth anniversary of Alexander Ivanovich Bulgakov and to the 90-th anniversary of the Institute of Mathematics, Physics and Information Technologies of Derzhavin Tambov State University
October 14, 2020 11:35   

Organisations
 
  Contact us:
 Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024