Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory, 2017, Volume 133, Pages 120–129 (Mi into192)  

This article is cited in 2 scientific papers (total in 2 papers)

Finite-Difference Methods for Fractional Differential Equations of Order $1/2$

M. Yu. Kokurina, S. I. Piskarevb, M. Spreaficoc

a Mari State University, Ioshkar-Ola
b Lomonosov Moscow State University, Research Computing Center
c Department of Mathematics and Physics, Instituto Nazionale di Fisica Nucleare, Lecce, Italy
Full-text PDF (345 kB) Citations (2)
Abstract: In this work, we study approximations of solutions of fractional differential equations of order ${1}/{2}$. We present a new method of approximation and obtain the order of convergence. The presentation is given within the abstract framework of a semidiscrete approximation scheme, which includes finite-element methods, finite-difference schemes, and projection methods.
Keywords: fractional Cauchy problem, Banach space, $\alpha$-times resolution family, discretization methods, difference scheme, error estimate.
Funding agency Grant number
Russian Foundation for Basic Research 15-01-00026_a
16-01-00039_a
English version:
Journal of Mathematical Sciences (New York), 2018, Volume 230, Issue 6, Pages 950–960
DOI: https://doi.org/10.1007/s10958-018-3800-6
Bibliographic databases:
Document Type: Article
UDC: 519.63
MSC: 45L05; 65M12
Language: Russian
Citation: M. Yu. Kokurin, S. I. Piskarev, M. Spreafico, “Finite-Difference Methods for Fractional Differential Equations of Order $1/2$”, Functional analysis, Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 133, VINITI, Moscow, 2017, 120–129; J. Math. Sci. (N. Y.), 230:6 (2018), 950–960
Citation in format AMSBIB
\Bibitem{KokPisSpr17}
\by M.~Yu.~Kokurin, S.~I.~Piskarev, M.~Spreafico
\paper Finite-Difference Methods for Fractional Differential Equations of Order $1/2$
\inbook Functional analysis
\serial Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.
\yr 2017
\vol 133
\pages 120--129
\publ VINITI
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/into192}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3799502}
\zmath{https://zbmath.org/?q=an:1393.45009}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2018
\vol 230
\issue 6
\pages 950--960
\crossref{https://doi.org/10.1007/s10958-018-3800-6}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85045126586}
Linking options:
  • https://www.mathnet.ru/eng/into192
  • https://www.mathnet.ru/eng/into/v133/p120
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
    Statistics & downloads:
    Abstract page:325
    Full-text PDF :118
    First page:39
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024