Sibirskii Zhurnal Vychislitel'noi Matematiki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. Zh. Vychisl. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Zhurnal Vychislitel'noi Matematiki, 2002, Volume 5, Number 2, Pages 101–111 (Mi sjvm242)  

This article is cited in 2 scientific papers (total in 2 papers)

Iterative Newton-type methods with projecting for solution of nonlinear ill-posed operator equations

A. B. Bakushinskiia, M. Yu. Kokurinb, N. A. Yusupovab

a Institute of Systems Analysis, Russian Academy of Sciences
b Mari State University
Full-text PDF (623 kB) Citations (2)
References:
Abstract: We propose and study a class of iterative methods of the Newton type for approximate solution of nonlinear ill-posed operator equations without the regularity property. A possible a priori information concerning the unknown solution is treated by the projecting onto a closed convex subset containing the solution. The two ways of arranging of the computational process are considered. The first one requires the stopping of iterations at an appropriate step, while the second ensures obtaining of an iterative sequence which stabilizes within a small neighborhood of the solution.
Received: 13.06.2001
Bibliographic databases:
UDC: 519.642.8
Language: Russian
Citation: A. B. Bakushinskii, M. Yu. Kokurin, N. A. Yusupova, “Iterative Newton-type methods with projecting for solution of nonlinear ill-posed operator equations”, Sib. Zh. Vychisl. Mat., 5:2 (2002), 101–111
Citation in format AMSBIB
\Bibitem{BakKokYus02}
\by A.~B.~Bakushinskii, M.~Yu.~Kokurin, N.~A.~Yusupova
\paper Iterative Newton-type methods with projecting for solution of nonlinear ill-posed operator equations
\jour Sib. Zh. Vychisl. Mat.
\yr 2002
\vol 5
\issue 2
\pages 101--111
\mathnet{http://mi.mathnet.ru/sjvm242}
\zmath{https://zbmath.org/?q=an:1027.65075}
Linking options:
  • https://www.mathnet.ru/eng/sjvm242
  • https://www.mathnet.ru/eng/sjvm/v5/i2/p101
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Sibirskii Zhurnal Vychislitel'noi Matematiki
    Statistics & downloads:
    Abstract page:467
    Full-text PDF :153
    References:79
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024