Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. Vyssh. Uchebn. Zaved. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika, 2016, Number 8, Pages 3–11 (Mi ivm9138)  

This article is cited in 6 scientific papers (total in 6 papers)

Iteratively regularized Gauss–Newton method for operator equations with normally solvable derivative at the solution

A. B. Bakushinskiia, M. Yu. Kokurinb

a Federal Research Center "Information Science and Control", Institute for Systems Analysis, Russian Academy of Sciences, 9 60-Letiya Oktyabrya Ave., Moscow, 117312 Russia
b Mari State University, 1 Lenin sq., Ioshkar Ola, 424001 Russia
Full-text PDF (200 kB) Citations (6)
References:
Abstract: We study the iteratively regularized Gauss–Newton method in a Hilbert space for solving irregular nonlinear equations with smooth operators having normally solvable derivatives at the solution. We consider both a priori and a posteriori stopping criterions for the iterations and establish accuracy estimates for resulting approximations. In the case where the a priori stopping rule is used, the accuracy of approximations arises to be proportional to the error level in input data. The latter result generalizes well-known estimates of this kind obtained for linear equations with normally solvable operators.
Keywords: operator equation, irregular operator, Hilbert space, normally solvable operator, Gauss–Newton method, iterative regularization, stopping rule, accuracy estimate.
Funding agency Grant number
Russian Foundation for Basic Research 15-01-00026а
15-07-99514a
Received: 01.01.2015
English version:
Russian Mathematics (Izvestiya VUZ. Matematika), 2016, Volume 60, Issue 8, Pages 1–8
DOI: https://doi.org/10.3103/S1066369X16080016
Bibliographic databases:
Document Type: Article
UDC: 517.988
Language: Russian
Citation: A. B. Bakushinskii, M. Yu. Kokurin, “Iteratively regularized Gauss–Newton method for operator equations with normally solvable derivative at the solution”, Izv. Vyssh. Uchebn. Zaved. Mat., 2016, no. 8, 3–11; Russian Math. (Iz. VUZ), 60:8 (2016), 1–8
Citation in format AMSBIB
\Bibitem{BakKok16}
\by A.~B.~Bakushinskii, M.~Yu.~Kokurin
\paper Iteratively regularized Gauss--Newton method for operator equations with normally solvable derivative at the solution
\jour Izv. Vyssh. Uchebn. Zaved. Mat.
\yr 2016
\issue 8
\pages 3--11
\mathnet{http://mi.mathnet.ru/ivm9138}
\transl
\jour Russian Math. (Iz. VUZ)
\yr 2016
\vol 60
\issue 8
\pages 1--8
\crossref{https://doi.org/10.3103/S1066369X16080016}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000409303600001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84976416822}
Linking options:
  • https://www.mathnet.ru/eng/ivm9138
  • https://www.mathnet.ru/eng/ivm/y2016/i8/p3
  • This publication is cited in the following 6 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия высших учебных заведений. Математика Russian Mathematics (Izvestiya VUZ. Matematika)
    Statistics & downloads:
    Abstract page:318
    Full-text PDF :123
    References:39
    First page:15
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024