Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki, 2016, Volume 56, Number 9, Pages 1543–1555
DOI: https://doi.org/10.7868/S0044466916090106
(Mi zvmmf10450)
 

This article is cited in 6 scientific papers (total in 6 papers)

Iteratively regularized methods for irregular nonlinear operator equations with a normally solvable derivative at the solution

M. Yu. Kokurin

Mari State University, Yoshkar-Ola, Russia
Full-text PDF (240 kB) Citations (6)
References:
Abstract: A group of iteratively regularized methods of Gauss–Newton type for solving irregular nonlinear equations with smooth operators in a Hilbert space under the condition of normal solvability of the derivative of the operator at the solution is considered. A priori and a posteriori methods for termination of iterations are studied, and estimates of the accuracy of approximations obtained are found. It is shown that, in the case of a priori termination, the accuracy of the approximation is proportional to the error in the input data. Under certain additional conditions, the same estimate is established for a posterior termination from the residual principle. These results generalize known similar estimates for linear equations with a normally solvable operator.
Key words: operator equations, irregular operator, Hilbert space, normally solvable operator, Gauss–Newton methods, iterative regularization, termination criterion, estimate of accuracy.
Funding agency Grant number
Russian Foundation for Basic Research 15-07-99514_а
16-01-00039_а
Received: 28.10.2015
Revised: 16.02.2016
English version:
Computational Mathematics and Mathematical Physics, 2016, Volume 56, Issue 9, Pages 1523–1535
DOI: https://doi.org/10.1134/S0965542516090098
Bibliographic databases:
Document Type: Article
UDC: 519.642.8
Language: Russian
Citation: M. Yu. Kokurin, “Iteratively regularized methods for irregular nonlinear operator equations with a normally solvable derivative at the solution”, Zh. Vychisl. Mat. Mat. Fiz., 56:9 (2016), 1543–1555; Comput. Math. Math. Phys., 56:9 (2016), 1523–1535
Citation in format AMSBIB
\Bibitem{Kok16}
\by M.~Yu.~Kokurin
\paper Iteratively regularized methods for irregular nonlinear operator equations with a normally solvable derivative at the solution
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2016
\vol 56
\issue 9
\pages 1543--1555
\mathnet{http://mi.mathnet.ru/zvmmf10450}
\crossref{https://doi.org/10.7868/S0044466916090106}
\elib{https://elibrary.ru/item.asp?id=26498079}
\transl
\jour Comput. Math. Math. Phys.
\yr 2016
\vol 56
\issue 9
\pages 1523--1535
\crossref{https://doi.org/10.1134/S0965542516090098}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000385164100001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84989936209}
Linking options:
  • https://www.mathnet.ru/eng/zvmmf10450
  • https://www.mathnet.ru/eng/zvmmf/v56/i9/p1543
  • This publication is cited in the following 6 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Журнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics
    Statistics & downloads:
    Abstract page:239
    Full-text PDF :55
    References:64
    First page:13
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024