Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki, 2018, Volume 58, Number 11, Pages 1815–1828
DOI: https://doi.org/10.31857/S004446690003535-9
(Mi zvmmf10854)
 

This article is cited in 2 scientific papers (total in 2 papers)

Solution of ill-posed nonconvex optimization problems with accuracy proportional to the error in input data

M. Yu. Kokurin

Mari State University, Yoshkar-Ola, Russia
Citations (2)
References:
Abstract: The ill-posed problem of minimizing an approximately specified smooth nonconvex functional on a convex closed subset of a Hilbert space is considered. For the class of problems characterized by a feasible set with a nonempty interior and a smooth boundary, regularizing procedures are constructed that ensure an accuracy estimate proportional or close to the error in the input data. The procedures are generated by the classical Tikhonov scheme and a gradient projection technique. A necessary condition for the existence of procedures regularizing the class of optimization problems with a uniform accuracy estimate in the class is established.
Key words: ill-posed optimization problem, error, Hilbert space, convex closed set, Minkowski functional, Tikhonov's scheme, gradient projection method, accuracy estimate.
Funding agency Grant number
Russian Foundation for Basic Research 16-01-00039_a
Received: 30.01.2017
English version:
Computational Mathematics and Mathematical Physics, 2018, Volume 58, Issue 11, Pages 1748–1760
DOI: https://doi.org/10.1134/S0965542518110064
Bibliographic databases:
Document Type: Article
UDC: 517.988
Language: Russian
Citation: M. Yu. Kokurin, “Solution of ill-posed nonconvex optimization problems with accuracy proportional to the error in input data”, Zh. Vychisl. Mat. Mat. Fiz., 58:11 (2018), 1815–1828; Comput. Math. Math. Phys., 58:11 (2018), 1748–1760
Citation in format AMSBIB
\Bibitem{Kok18}
\by M.~Yu.~Kokurin
\paper Solution of ill-posed nonconvex optimization problems with accuracy proportional to the error in input data
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2018
\vol 58
\issue 11
\pages 1815--1828
\mathnet{http://mi.mathnet.ru/zvmmf10854}
\crossref{https://doi.org/10.31857/S004446690003535-9}
\elib{https://elibrary.ru/item.asp?id=38641495}
\transl
\jour Comput. Math. Math. Phys.
\yr 2018
\vol 58
\issue 11
\pages 1748--1760
\crossref{https://doi.org/10.1134/S0965542518110064}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000452301900006}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85058846448}
Linking options:
  • https://www.mathnet.ru/eng/zvmmf10854
  • https://www.mathnet.ru/eng/zvmmf/v58/i11/p1815
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Журнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024