Abstract:
Several examples of one-dimensional analytic sets of uniqueness for harmonic functions on the sphere in R3 are given and some examples of analytic sets on the sphere in Rn which cannot contain sets of uniqueness are presented. Analytic curves which are sets of uniqueness for real-analytic functions in Rn, n⩾3, are constructed. The obtained results are used to justify the inhomogeneity sounding schemes when the inverse problem of acoustic scattering is solved under the conditions that the source and detector coordinates coincide.
Keywords:
inhomogeneity sounding, set of uniqueness, inverse scattering problem, acoustic sounding scheme.
Citation:
M. Yu. Kokurin, “Sets of Uniqueness for Harmonic and Analytic Functions and Inverse Problems for Wave Equations”, Mat. Zametki, 97:3 (2015), 397–406; Math. Notes, 97:3 (2015), 376–383
\Bibitem{Kok15}
\by M.~Yu.~Kokurin
\paper Sets of Uniqueness for Harmonic and Analytic Functions and Inverse Problems for Wave Equations
\jour Mat. Zametki
\yr 2015
\vol 97
\issue 3
\pages 397--406
\mathnet{http://mi.mathnet.ru/mzm10599}
\crossref{https://doi.org/10.4213/mzm10599}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3370527}
\zmath{https://zbmath.org/?q=an:06455271}
\elib{https://elibrary.ru/item.asp?id=23421529}
\transl
\jour Math. Notes
\yr 2015
\vol 97
\issue 3
\pages 376--383
\crossref{https://doi.org/10.1134/S0001434615030086}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000353566800008}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84928690461}
Linking options:
https://www.mathnet.ru/eng/mzm10599
https://doi.org/10.4213/mzm10599
https://www.mathnet.ru/eng/mzm/v97/i3/p397
This publication is cited in the following 3 articles:
M. Yu. Kokurin, “Edinstvennost resheniya uravneniya M.M. Lavrenteva s istochnikami na okruzhnosti”, Izv. vuzov. Matem., 2025, no. 2, 53–60
M. Yu. Kokurin, “On the Completeness of Products of Harmonic Functions and the Uniqueness of the Solution of the Inverse Acoustic Sounding Problem”, Math. Notes, 104:5 (2018), 689–695
Arendt W., “Vector-valued holomorphic and harmonic functions”, Concr. Operators, 3:1 (2016), 68–76