Теория потенциала, теория аналитических и субгармонических функций, теория аппроксимации.
Основные публикации:
A uniqueness theorem for meromorphic functions. - Izv. Akad. Nauk Armjan. SSR.
Ser. Mat. 15 (1980), no. 2, 110–126.
On the radii of exceptional disks in lower estimates of the modulus of functions of
bounded type. - Uspekhi Mat. Nauk 36 (1981), no. 6(222), 233–234.
Decrease on a sequence of points of a function holomorphic on a half plane. - Sibirsk. Mat. Zh. 24 (1983), no. 2, 180–192.
The estimations outside exceptional sets and uniqueness theorems for δ-subharmonic functions. Thesis. Moscow, 1983, 130 p.
On the algorithm of Diliberto and Straus for approximating bivariate functions by sums g(x)+h(y). - Sibirsk. Mat. Zh. 28 (1987), no. 5, 223–224. The complete version is deposited at VINITI, no. 2505-B, 1986, 16 p.
Exceptional sets in asymptotic estimates of subharmonic functions. - Sibirsk. Mat. Zh. 29 (1988), no. 6, 185–196.
Measure and capacity of exceptional sets arising in estimations of δ-subharmonic functions. - Potential Theory. Proc. Intern. Conf. on Potential Theory, Nagoya, 1990.
Ed. M. Kishi et al. Walter de Gruyter Publ., 1992, 171–177.
On the comparison of Hausdorff measure and capacity. - Algebra i Analis 3 (1991), no. 6, 174–189. = St. Petersburg Math. J. 3 (1992), no. 6, 1367–1381.
On a sum of values on the sequence of points for functions from some classes. - Izvestiya Vuzov. Mat. 1992, no. 1, 89–97.
Metric characteristics of exceptional sets arising in estimations of subharmonic functions. - Mat. Sbornik 185 (1994), no. 10, 145–160.
(with M. Essen) On exceptional sets for superharmonic functions in a halfspace: an inverse problem. - Math. Scandinavica 76 (1995), 273–288.
On a conjecture of L. D. Ivanov. - In: Linear and Complex Analysis Problem Book 3, Vol. 2. Lect. Notes in Math. 1574. Springer, 1994, 152–153.
On an approximation by polynomials with small coefficients. - Mat. Zametki (Math. Notes) 57 (1995), no. 1, 150–153.
(with M. Essén) Harmonic majorization of |x1| in subsets of Rn, n⩾ - Ann. Acad. Sci. Fenn. Math. 21 (1996), no. 1, 223–240.
Estimates of potentials and \delta-subharmonic functions outside exceptional sets. - Izv. Ross. Akad. Nauk, Matem. 61 (1997), no. 6, 181–218.
Hausdorff measure and capacity associated with the Cauchy potentials. - Math. Zametki (Math. Notes) 63 (1998), no. 6, 923–934.
Metric properties of exceptional sets. - Complex Analysis and Differential Equations. Proceedings of the Marcus Wallenberg Symposium in Honor of Matts Essen Held in Uppsala, Sweden, June 15–18, 1997. Uppsala: Uppsala Univ., 1999.
Metric characteristics of exceptional sets and uniqueness theorems in function theory. Doctorate thesis. Moscow, 1999, 192 p.
(with M. Essén) Uniqueness theorems for analytic and subharmonic functions. - Algebra i Analiz 14 (2002), no. 6, 1–88. = St. Petersburg Math. J. 14 (2003), no. 6, 889–952.
(with P. Thomas) Equivalence of summatory conditions along sequences for bounded holomorphic functions. - Complex Var. Theory Appl. 49 (2004), no. 7–9, 595–611.
Capacities of generalized Cantor sets. - In: Selected Topics in Complex Analysis. The S. Ya. Khavinson Memorial Volume. Operator Theory: Adv. And Appl., Vol. 158. Birkhauser, 2005, pp. 131–139.
(with J. M. Anderson) Estimates for the Cauchy transform of point masses (the logarithmic derivative of polynomials). - Dokl. Akad. Nauk, 401 (2005), no. 5, 583–586. = Doklady Mathematics, 71 (2005), no. 2, 241–244.
(with J. M. Anderson) Cauchy transforms of point masses: the logarithmic derivative of polynomials. - Ann. Math. 163 (2006), 1057–1076.
А. Л. Вольберг, В. Я. Эйдерман, “Неоднородный гармонический анализ: 16 лет развития”, УМН, 68:6(414) (2013), 3–58; A. L. Volberg, V. Ya. Èiderman, “Non-homogeneous harmonic analysis: 16 years of development”, Russian Math. Surveys, 68:6 (2013), 973–1026
В. Я. Эйдерман, “Оценки картановского типа для потенциалов с ядром Коши и с действительными ядрами”, Матем. сб., 198:8 (2007), 115–160; V. Ya. Èiderman, “Cartan-type estimates for potentials with Cauchy
kernels and real-valued kernels”, Sb. Math., 198:8 (2007), 1175–1220
В. Я. Эйдерман, Э. Маттс, “Теоремы единственности для аналитических и субгармонических функций”, Алгебра и анализ, 14:6 (2002), 1–88; V. Ya. Èiderman, E. Matts, “Uniqueness theorems for analytic and subharmonic functions”, St. Petersburg Math. J., 14:6 (2003), 889–952
В. Я. Эйдерман, “Мера Хаусдорфа и емкость, ассоциированная с потенциалами Коши”, Матем. заметки, 63:6 (1998), 923–934; V. Ya. Èiderman, “Hausdorff measure and capacity associated with Cauchy potentials”, Math. Notes, 63:6 (1998), 813–822
В. Я. Эйдерман, “Оценки потенциалов и \delta-субгармонических функций вне исключительных множеств”, Изв. РАН. Сер. матем., 61:6 (1997), 181–218; V. Ya. Èiderman, “Estimates for potentials and \delta-subharmonic functions outside exceptional sets”, Izv. Math., 61:6 (1997), 1293–1329
В. Я. Эйдерман, “Об аппроксимации полиномами с малыми коэффициентами”, Матем. заметки, 57:1 (1995), 150–153; V. Ya. Èiderman, “Approximation by polynomials with small coefficients”, Math. Notes, 57:1 (1995), 110–112
1994
7.
В. Я. Эйдерман, “Метрические характеристики исключительных множеств, возникающих в оценках субгармонических функций”, Матем. сб., 185:10 (1994), 145–160; V. Ya. Èiderman, “Metric characteristics of exceptional sets arising in estimates of subharmonic functions”, Russian Acad. Sci. Sb. Math., 83:1 (1995), 283–296
В. Я. Эйдерман, “О сумме значений функций из некоторых классов на последовательности точек”, Изв. вузов. Матем., 1992, № 1, 89–97; V. Ya. Èiderman, “On the sum of values of functions in certain classes on a sequence of points”, Russian Math. (Iz. VUZ), 36:1 (1992), 87–95
В. Я. Эйдерман, “О сравнении меры Хаусдорфа и емкости”, Алгебра и анализ, 3:6 (1991), 173–188; V. Ya. Èiderman, “On a comparison between the Hausdorff measure and capacity”, St. Petersburg Math. J., 3:6 (1992), 1367–1381
В. Я. Эйдерман, “Об исключительном множестве в асимптотических оценках субгармонических функций”, Сиб. матем. журн., 29:6 (1988), 185–196; V. Ya. Èiderman, “An exceptional set in asymptotic estimates of subharmonic functions”, Siberian Math. J., 29:6 (1988), 1019–1027
В. Я. Эйдерман, “Об убывании аналитической в полуплоскости функции на последовательности точек”, Сиб. матем. журн., 24:2 (1983), 180–192; V. Ya. Èiderman, “Decrease of a function analytic in the half plane over a sequence of points”, Siberian Math. J., 24:2 (1983), 304–315
1981
12.
В. Я. Эйдерман, “О радиусах исключительных дисков в оценке снизу
модуля функции ограниченного вида”, УМН, 36:6(222) (1981), 233–234; V. Ya. Èiderman, “On the radii of exceptional discs in lower estimates of the modulus of functions of bounded type”, Russian Math. Surveys, 36:6 (1981), 175–176
2004
13.
А. Г. Витушкин, А. А. Гончар, М. В. Самохин, В. М. Тихомиров, П. Л. Ульянов, В. П. Хавин, В. Я. Эйдерман, “Семен Яковлевич Хавинсон (некролог)”, УМН, 59:4(358) (2004), 186–192; A. G. Vitushkin, A. A. Gonchar, M. V. Samokhin, V. M. Tikhomirov, P. L. Ul'yanov, V. P. Havin, V. Ya. Èiderman, “Semën Yakovlevich Khavinson (obituary)”, Russian Math. Surveys, 59:4 (2004), 777–785