|
|
Публикации в базе данных Math-Net.Ru |
Цитирования |
|
2021 |
1. |
В. А. Кибкало, А. Т. Фоменко, И. С. Харчева, “Реализация интегрируемых гамильтоновых систем бильярдными книжками”, Тр. ММО, 82:1 (2021), 45–78 ; V. A. Kibkalo, A. T. Fomenko, I. S. Kharcheva, “Realizing integrable Hamiltonian systems by means of billiard books”, Trans. Moscow Math. Soc., 82 (2021), 37–64 |
9
|
2. |
В. В. Ведюшкина, И. С. Харчева, “Биллиардные книжки реализуют все базы слоений Лиувилля интегрируемых гамильтоновых систем”, Матем. сб., 212:8 (2021), 89–150 ; V. V. Vedyushkina, I. S. Kharcheva, “Billiard books realize all bases of Liouville foliations of integrable Hamiltonian systems”, Sb. Math., 212:8 (2021), 1122–1179 |
12
|
|
2020 |
3. |
И. С. Харчева, “Изоэнергетические многообразия интегрируемых бильярдных книжек”, Вестн. Моск. ун-та. Сер. 1. Матем., мех., 2020, № 4, 12–22 ; I. S. Kharcheva, “Isoenergy manifolds of integrable billiard books”, Moscow University Mathematics Bulletin, 75:4 (2020), 149–160 |
15
|
|
2018 |
4. |
В. В. Ведюшкина, А. Т. Фоменко, И. С. Харчева, “Моделирование невырожденных бифуркаций замыканий решений интегрируемых систем с двумя степенями свободы интегрируемыми топологическими биллиардами”, Докл. РАН, 479:6 (2018), 607–610 ; V. V. Vedyushkina, A. T. Fomenko, I. S. Kharcheva, “Modeling nondegenerate bifurcations of closures of solutions for integrable systems with two degrees of freedom by integrable topological billiards”, Dokl. Math., 97:2 (2018), 174–176 |
20
|
5. |
В. В. Ведюшкина, И. С. Харчева, “Биллиардные книжки моделируют все трехмерные бифуркации интегрируемых гамильтоновых систем”, Матем. сб., 209:12 (2018), 17–56 ; V. V. Vedyushkina, I. S. Kharcheva, “Billiard books model all three-dimensional bifurcations of integrable Hamiltonian systems”, Sb. Math., 209:12 (2018), 1690–1727 |
38
|
|