Persons
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
 
Kovalevsky, Alexander Albertovich

Statistics Math-Net.Ru
Total publications: 21
Scientific articles: 21
Presentations: 1

Number of views:
This page:5468
Abstract pages:6793
Full texts:2128
References:1048
Professor
Doctor of physico-mathematical sciences (1995)
Speciality: 01.01.02 (Differential equations, dynamical systems, and optimal control)
E-mail:
Keywords: nonlinear elliptic equations and variational inequalities; homogenization of boundary value problems in variable domains; G-convergence of nonlinear operators; Ã-convergence of integral functionals; existence and properties of solutions of nonlinear equations with L1-data; regularity of solutions of degenerate nonlinear high-order equations.

Subject:

Necessary and sufficient conditions for Ã-convergence of integral functionals with varying domain of definition were established and theorems on Ã-compactness for these functionals were proved. New results on $G$-compactness of sequences of nonlinear elliptic operators (including high-order operators) corresponding to Dirichlet and Neumann problems in variable domains were obtained. G-convergence of nonlinear operators of Neumann problems in domains of framework-type periodic structure with thin channels was studied and representations for coefficients of the G-limit operator were obtained. The asymptotic behaviour of solutions of Neumann problems for nonlinear elliptic equations in three-dimensional domains with periodically allocated simple and double accumulators was investigated. It was shown that these solutions converge in a certain sense to a solution of a problem for a system of some functional equations and one differential equation. An effect of double homogenization was first established in regard to Dirichlet problems for nonlinear elliptic second-order equations with coefficients depended on a parameter in variable domains of general structure. A notion of entropy solution of Dirichlet problem for some classes of nonlinear elliptic high-order equations with L1-data was introduced and results on existence, uniqueness and summability of such a kind of solutions were proved. New results on summability of solutions of nonlinear elliptic second-order equations with right-hand sides in logarithmic classes of functions were established.

Biography

Graduated from Mathematical Faculty of the Donetsk State University in 1979 (department of differential equations). Ph.D. thesis was defended in 1985. D. Sci. thesis was defended in 1995.

   
Main publications:
  • Kovalevskii A.A. G-convergence and homogenization of nonlinear elliptic operators in divergence form with variable domain // Russ. Acad.Sci. Izv. Math., 1995, 44(3), 431–460.
  • Kovalevsky A. An effect of double homogenization for Dirichlet problems in variable domains of general structure // Comptes Rendus Acad. Sci. Paris, Ser. I, 1999, 328(12), 1151–1156.
  • Kovalevskii A.A. Entropy solutions of the Dirichlet problem for a class of non-linear elliptic fourth-order equations with right-hand sides in L1 // Izv. Math., 2001, 65(2), 231–283.
  • Kovalevsky A.A. Integrability and boundedness of solutions to some anisotropic problems // J. Math. Anal. Appl. 2015, 432(2), 820–843.
  • Kovalevsky A.A., Skrypnik I.I., Shishkov A.E. Singular Solutions of Nonlinear Elliptic and Parabolic Equations. Berlin: De Gruyter, 2016. 436 p.
  • Kovalevsky A.A. On the convergence of solutions to bilateral problems with the zero lower constraint and an arbitrary upper constraint in variable domains // Nonlinear Anal., 2016, 147, 63–79.
  • Kovalevsky A.A. Variational problems with variable regular bilateral constraints in variable domains // Rev. Mat. Complut., 2019, 32(2), 327–351.
  • Kovalevsky A.A. On the convergence of solutions of variational problems with variable implicit pointwise constraints in variable domains // Ann. Mat. Pura Appl., 2019, 198(4), 1087–1119.

https://www.mathnet.ru/eng/person8810
List of publications on Google Scholar
https://zbmath.org/authors/ai:kovalevsky.alexander-a
https://mathscinet.ams.org/mathscinet/MRAuthorID/213556
https://orcid.org/0000-0003-1431-2075
https://www.webofscience.com/wos/author/record/H-3800-2018
https://www.scopus.com/authid/detail.url?authorId=7004993015

Publications in Math-Net.Ru Citations
2024
1. A. A. Kovalevsky, “Criteria for the existence of weak solutions of the Dirichlet problem for nonlinear degenerate elliptic equations for any right-hand side in $L^1$”, Mat. Zametki, 116:3 (2024),  482–485  mathnet; Math. Notes, 116:3 (2024), 571–574
2021
2. A. A. Kovalevsky, “On the convergence of minimizers and minimum values in variational problems with pointwise functional constraints in variable domains”, Trudy Inst. Mat. i Mekh. UrO RAN, 27:1 (2021),  246–257  mathnet  isi  elib  scopus
2020
3. A. A. Kovalevsky, “Summability of Solutions of the Dirichlet Problem for Nonlinear Elliptic Equations with Right-Hand Side in Classes Close to $L^1$”, Mat. Zametki, 107:6 (2020),  934–939  mathnet  mathscinet  elib; Math. Notes, 107:6 (2020), 1023–1028  isi  scopus 2
2019
4. A. A. Kovalevsky, “Integrability Properties of Functions with a Given Behavior of Distribution Functions and Some Applications”, Trudy Inst. Mat. i Mekh. UrO RAN, 25:1 (2019),  78–92  mathnet  elib; Proc. Steklov Inst. Math. (Suppl.), 308, suppl. 1 (2020), S112–S126  isi  scopus 3
2018
5. A. A. Kovalevsky, “On the Convergence of Solutions of Variational Problems with Implicit Pointwise Constraints in Variable Domains”, Funktsional. Anal. i Prilozhen., 52:2 (2018),  82–85  mathnet  mathscinet  elib; Funct. Anal. Appl., 52:2 (2018), 147–150  isi  scopus 1
6. A. A. Kovalevsky, “On the convergence of solutions of variational problems with implicit constraints defined by rapidly oscillating functions”, Trudy Inst. Mat. i Mekh. UrO RAN, 24:2 (2018),  107–122  mathnet  elib; Proc. Steklov Inst. Math. (Suppl.), 305, suppl. 1 (2019), S86–S101  isi  scopus 2
2017
7. A. A. Kovalevsky, “Variational problems with unilateral pointwise functional constraints in variable domains”, Trudy Inst. Mat. i Mekh. UrO RAN, 23:2 (2017),  133–150  mathnet  elib; Proc. Steklov Inst. Math. (Suppl.), 301, suppl. 1 (2018), 115–131  isi 3
8. Alexander A. Kovalevsky, “Convergence of solutions of bilateral problems in variable domains and related questions”, Ural Math. J., 3:2 (2017),  51–66  mathnet  mathscinet  elib 2
2016
9. A. A. Kovalevsky, “On the convergence of solutions of variational problems with bilateral obstacles in variable domains”, Trudy Inst. Mat. i Mekh. UrO RAN, 22:1 (2016),  140–152  mathnet  mathscinet  elib; Proc. Steklov Inst. Math. (Suppl.), 296, suppl. 1 (2017), 151–163  isi  scopus 4
2015
10. A. A. Kovalevsky, “Toward the $L^1$-theory of degenerate anisotropic elliptic variational inequalities”, Trudy Inst. Mat. i Mekh. UrO RAN, 21:1 (2015),  137–152  mathnet  mathscinet  elib; Proc. Steklov Inst. Math. (Suppl.), 292, suppl. 1 (2016), 156–172  isi  scopus
2011
11. A. A. Kovalevsky, Yu. S. Gorban, “On $T$-solutions of degenerate anisotropic elliptic variational inequalities with $L^1$-data”, Izv. RAN. Ser. Mat., 75:1 (2011),  101–160  mathnet  mathscinet  zmath  elib; Izv. Math., 75:1 (2011), 101–156  isi  scopus 8
2006
12. A. A. Kovalevsky, “A priori properties of solutions of nonlinear equations with degenerate coercivity and $L^1$-data”, CMFD, 16 (2006),  47–67  mathnet  mathscinet; Journal of Mathematical Sciences, 149:5 (2008), 1517–1538  scopus 5
13. A. A. Kovalevsky, F. Nicolosi, “On the sets of boundedness of solutions for a class of degenerate nonlinear elliptic fourth-order equations with $L^1$-data”, Fundam. Prikl. Mat., 12:4 (2006),  99–112  mathnet  mathscinet  zmath  elib; J. Math. Sci., 150:5 (2008), 2358–2368  scopus 5
2003
14. A. A. Kovalevsky, “On the summability of entropy solutions for the Dirichlet problem in a class of non-linear elliptic fourth-order equations”, Izv. RAN. Ser. Mat., 67:5 (2003),  35–48  mathnet  mathscinet  zmath; Izv. Math., 67:5 (2003), 881–894  isi  scopus 10
15. A. A. Kovalevsky, “Integrability of Solutions of Nonlinear Elliptic Equations with Right-Hand Sides from Logarithmic Classes”, Mat. Zametki, 74:5 (2003),  676–685  mathnet  mathscinet  zmath; Math. Notes, 74:5 (2003), 637–646  isi 9
2001
16. A. A. Kovalevsky, “Entropy solutions of the Dirichlet problem for a class of non-linear elliptic fourth-order equations with right-hand sides in $L^1$”, Izv. RAN. Ser. Mat., 65:2 (2001),  27–80  mathnet  mathscinet  zmath; Izv. Math., 65:2 (2001), 231–283  scopus 28
17. A. A. Kovalevsky, “Integrability of Solutions of Nonlinear Elliptic Equations with Right-Hand Sides from Classes Close to $L^1$”, Mat. Zametki, 70:3 (2001),  375–385  mathnet  mathscinet  zmath  elib; Math. Notes, 70:3 (2001), 337–346  isi 17
2000
18. A. A. Kovalevsky, “A necessary condition for the strong $G$-convergence of nonlinear operators of Dirichlet problems with variable domain”, Differ. Uravn., 36:4 (2000),  537–541  mathnet  mathscinet; Differ. Equ., 36:4 (2000), 599–604
1996
19. A. A. Kovalevsky, “$G$-compactness of sequences of non-linear operators of Dirichlet problems with a variable domain of definition”, Izv. RAN. Ser. Mat., 60:1 (1996),  133–164  mathnet  mathscinet  zmath; Izv. Math., 60:1 (1996), 137–168  isi  scopus 8
1994
20. A. A. Kovalevsky, “On the uniform boundedness of solutions of nonlinear elliptic variational inequalities in variable domains”, Differ. Uravn., 30:8 (1994),  1370–1373  mathnet  mathscinet; Differ. Equ., 30:8 (1994), 1270–1273
21. A. A. Kovalevsky, “$G$-convergence and homogenization of nonlinear elliptic operators in divergence form with variable domain”, Izv. RAN. Ser. Mat., 58:3 (1994),  3–35  mathnet  mathscinet  zmath; Russian Acad. Sci. Izv. Math., 44:3 (1995), 431–460  isi 8

Presentations in Math-Net.Ru
1. Limits of constrained minimum problems in variable domains
A. A. Kovalevsky
III International Conference “Mathematical Physics, Dynamical Systems, Infinite-Dimensional Analysis”, dedicated to the 100th anniversary of V.S. Vladimirov, the 100th anniversary of L.D. Kudryavtsev and the 85th anniversary of O.G. Smolyanov
July 6, 2023 12:35

Organisations
 
  Contact us:
 Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024