Contemporary Mathematics. Fundamental Directions
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Publishing Ethics

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



CMFD:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Contemporary Mathematics. Fundamental Directions, 2006, Volume 16, Pages 47–67 (Mi cmfd48)  

This article is cited in 5 scientific papers (total in 5 papers)

A priori properties of solutions of nonlinear equations with degenerate coercivity and L1-data

A. A. Kovalevsky

Institute of Applied Mathematics and Mechanics, Ukraine National Academy of Sciences
Full-text PDF (250 kB) Citations (5)
References:
Abstract: A Dirichlet problem for a second-order nonlinear elliptic equation in the general divergent form with a right-hand side from L1 is considered. The high-order coefficients in the equation are supposed to satisfy the degenerate coercivity condition. The main results concern a priori properties of summability and some estimates of entropy solutions of this problem.
English version:
Journal of Mathematical Sciences, 2008, Volume 149, Issue 5, Pages 1517–1538
DOI: https://doi.org/10.1007/s10958-008-0080-6
Bibliographic databases:
UDC: 517.9
Language: Russian
Citation: A. A. Kovalevsky, “A priori properties of solutions of nonlinear equations with degenerate coercivity and L1-data”, Proceedings of the Fourth International Conference on Differential and Functional-Differential Equations (Moscow, August 14–21, 2005). Part 2, CMFD, 16, PFUR, M., 2006, 47–67; Journal of Mathematical Sciences, 149:5 (2008), 1517–1538
Citation in format AMSBIB
\Bibitem{Kov06}
\by A.~A.~Kovalevsky
\paper A priori properties of solutions of nonlinear equations with degenerate coercivity and $L^1$-data
\inbook Proceedings of the Fourth International Conference on Differential and Functional-Differential Equations (Moscow, August 14--21, 2005). Part~2
\serial CMFD
\yr 2006
\vol 16
\pages 47--67
\publ PFUR
\publaddr M.
\mathnet{http://mi.mathnet.ru/cmfd48}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2336445}
\transl
\jour Journal of Mathematical Sciences
\yr 2008
\vol 149
\issue 5
\pages 1517--1538
\crossref{https://doi.org/10.1007/s10958-008-0080-6}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84920755446}
Linking options:
  • https://www.mathnet.ru/eng/cmfd48
  • https://www.mathnet.ru/eng/cmfd/v16/p47
  • This publication is cited in the following 5 articles:
    1. L. M. Kozhevnikova, “Entropy and renormalized solutions of anisotropic elliptic equations with variable nonlinearity exponents”, Sb. Math., 210:3 (2019), 417–446  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    2. A. A. Kovalevsky, “Integrability Properties of Functions with a Given Behavior of Distribution Functions and Some Applications”, Proc. Steklov Inst. Math. (Suppl.), 308, suppl. 1 (2020), S112–S126  mathnet  crossref  crossref  isi  elib
    3. L. M. Kozhevnikova, “Ob entropiinykh resheniyakh anizotropnykh ellipticheskikh uravnenii s peremennymi pokazatelyami nelineinostei v neogranichennykh oblastyakh”, Differentsialnye i funktsionalno-differentsialnye uravneniya, SMFN, 63, no. 3, Rossiiskii universitet druzhby narodov, M., 2017, 475–493  mathnet  crossref
    4. L. M. Kozhevnikova, “Existence of entropic solutions of elliptic problem in anisotropic Sobolev–Orlicz spaces”, J. Math. Sci. (N. Y.), 241:3 (2019), 258–284  mathnet  mathnet  crossref
    5. A. A. Kovalevsky, Yu. S. Gorban, “On $T$-solutions of degenerate anisotropic elliptic variational inequalities with $L^1$-data”, Izv. Math., 75:1 (2011), 101–156  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Современная математика. Фундаментальные направления
    Statistics & downloads:
    Abstract page:338
    Full-text PDF :108
    References:55
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025