Trudy Instituta Matematiki i Mekhaniki UrO RAN
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Inst. Mat. i Mekh. UrO RAN:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2017, Volume 23, Number 2, Pages 133–150
DOI: https://doi.org/10.21538/0134-4889-2017-23-2-133-150
(Mi timm1417)
 

This article is cited in 3 scientific papers (total in 3 papers)

Variational problems with unilateral pointwise functional constraints in variable domains

A. A. Kovalevskyab

a Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences, Ekaterinburg
b Ural Federal University named after the First President of Russia B. N. Yeltsin, Ekaterinburg
Full-text PDF (277 kB) Citations (3)
References:
Abstract: We consider a sequence of convex integral functionals $F_s\colon W^{1,p}(\Omega_s)\to\mathbb R$ and a sequence of weakly lower semicontinuous and, in general, non-integral functionals $G_s\colon W^{1,p}(\Omega_s)\to\mathbb R$, where $\{\Omega_s\}$ is a sequence of domains of $\mathbb R^n$ contained in a bounded domain $\Omega\subset\mathbb R^n$ ($n\geqslant 2$) and $p>1$. Along with this, we consider a sequence of closed convex sets $V_s=\{v\in W^{1,p}(\Omega_s)\colon v\geqslant K_s(v)\text{ a.e. in }\Omega_s\}$, where $K_s$ is a mapping of the space $W^{1,p}(\Omega_s)$ into the set of all functions defined on $\Omega_s$. We establish conditions under which minimizers and minimum values of the functionals $F_s+G_s$ on the sets $V_s$ converge to a minimizer and the minimum value, respectively, of a certain functional on the set $V=\{v\in W^{1,p}(\Omega)\colon v\geqslant K(v)\text{ a.e. in }\Omega\}$, where $K$ is a mapping of the space $W^{1,p}(\Omega)$ into the set of all functions defined on $\Omega$. These conditions include, in particular, the strong connectedness of the spaces $W^{1,p}(\Omega_s)$ with the space $W^{1,p}(\Omega)$, the exhaustion condition of the domain $\Omega$ by the domains $\Omega_s$, the $\Gamma$-convergence of the sequence $\{F_s\}$ to a functional $F\colon W^{1,p}(\Omega)\to\mathbb R$, and a certain convergence of the sequence $\{G_s\}$ to a functional $G\colon W^{1,p}(\Omega)\to\mathbb R$. We also assume certain conditions that characterize both the internal properties of the mappings $K_s$ and their relation to the mapping $K$. In particular, these conditions admit the study of variational problems with unilateral varying irregular obstacles and with varying constraints combining the pointwise dependence and the functional dependence of the integral form.
Keywords: variable domains, integral functional, unilateral pointwise functional constraints, minimizer, minimum value, $\Gamma$-convergence, strong connectedness.
Received: 06.01.2017
English version:
Proceedings of the Steklov Institute of Mathematics (Supplementary issues), 2018, Volume 301, Issue 1, Pages 115–131
DOI: https://doi.org/10.1134/S0081543818050097
Bibliographic databases:
Document Type: Article
UDC: 517.972
MSC: 49J40, 49J45
Language: Russian
Citation: A. A. Kovalevsky, “Variational problems with unilateral pointwise functional constraints in variable domains”, Trudy Inst. Mat. i Mekh. UrO RAN, 23, no. 2, 2017, 133–150; Proc. Steklov Inst. Math. (Suppl.), 301, suppl. 1 (2018), 115–131
Citation in format AMSBIB
\Bibitem{Kov17}
\by A.~A.~Kovalevsky
\paper Variational problems with unilateral pointwise functional constraints in variable domains
\serial Trudy Inst. Mat. i Mekh. UrO RAN
\yr 2017
\vol 23
\issue 2
\pages 133--150
\mathnet{http://mi.mathnet.ru/timm1417}
\crossref{https://doi.org/10.21538/0134-4889-2017-23-2-133-150}
\elib{https://elibrary.ru/item.asp?id=29295256}
\transl
\jour Proc. Steklov Inst. Math. (Suppl.)
\yr 2018
\vol 301
\issue , suppl. 1
\pages 115--131
\crossref{https://doi.org/10.1134/S0081543818050097}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000453520800011}
Linking options:
  • https://www.mathnet.ru/eng/timm1417
  • https://www.mathnet.ru/eng/timm/v23/i2/p133
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Trudy Instituta Matematiki i Mekhaniki UrO RAN
    Statistics & downloads:
    Abstract page:226
    Full-text PDF :49
    References:43
    First page:13
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024