Izvestiya: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya: Mathematics, 1996, Volume 60, Issue 1, Pages 137–168
DOI: https://doi.org/10.1070/IM1996v060n01ABEH000065
(Mi im65)
 

This article is cited in 8 scientific papers (total in 8 papers)

$G$-compactness of sequences of non-linear operators of Dirichlet problems with a variable domain of definition

A. A. Kovalevsky

Institute of Applied Mathematics and Mechanics, Ukraine National Academy of Sciences
References:
Abstract: For a sequence of operators $A_s\colon\overset{\circ}{W}{}^{1,m}(\Omega_s)\to\bigl(\overset{\circ}{W}{}^{1,m}(\Omega_s)\bigr)^*$ in divergence form we prove a theorem concerning the choice of a subsequence that $G$-converges to the operator $\widehat A\colon\overset{\circ}{W}{}^{1,m}(\Omega)\to\bigl(\overset{\circ}{W}{}^{1,m}(\Omega)\bigr)^*$ with the same leading coefficients as the operator $A_s$ and some additional lower coefficient $b(x,u)$. We give a procedure for constructing the function $b(x,u)$. We discuss the question of whether the principal condition under which the choice theorem is established is necessary. We prove criteria for this condition to hold.
Received: 28.10.1994
Bibliographic databases:
MSC: Primary 35J65, 49L10, 49L15; Secondary 47H15, 47H17, 35B99, 35D99
Language: English
Original paper language: Russian
Citation: A. A. Kovalevsky, “$G$-compactness of sequences of non-linear operators of Dirichlet problems with a variable domain of definition”, Izv. Math., 60:1 (1996), 137–168
Citation in format AMSBIB
\Bibitem{Kov96}
\by A.~A.~Kovalevsky
\paper $G$-compactness of sequences of non-linear operators of Dirichlet problems with a~variable domain of definition
\jour Izv. Math.
\yr 1996
\vol 60
\issue 1
\pages 137--168
\mathnet{http://mi.mathnet.ru//eng/im65}
\crossref{https://doi.org/10.1070/IM1996v060n01ABEH000065}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1391121}
\zmath{https://zbmath.org/?q=an:0879.35009}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1996VE15400006}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-21344458517}
Linking options:
  • https://www.mathnet.ru/eng/im65
  • https://doi.org/10.1070/IM1996v060n01ABEH000065
  • https://www.mathnet.ru/eng/im/v60/i1/p133
  • This publication is cited in the following 8 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024