Funktsional'nyi Analiz i ego Prilozheniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Funktsional. Anal. i Prilozhen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Funktsional'nyi Analiz i ego Prilozheniya, 2018, Volume 52, Issue 2, Pages 82–85
DOI: https://doi.org/10.4213/faa3496
(Mi faa3496)
 

This article is cited in 1 scientific paper (total in 1 paper)

Brief communications

On the Convergence of Solutions of Variational Problems with Implicit Pointwise Constraints in Variable Domains

A. A. Kovalevskyab

a Krasovskii Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences, Yekaterinburg, Russia
b Ural Federal University, Yekaterinburg, Russia
Full-text PDF (131 kB) Citations (1)
References:
Abstract: Results on the convergence of minimizers and minimum values of integral and more general functionals $J_s\colon W^{1,p}(\Omega_s)\to\mathbb R$ on the sets $U_s(h_s)=\{v\in W^{1,p}(\Omega_s)\colon h_s(v)\leqslant 0\ \text{a.e.\ in }\Omega_s\}$, where $p>1$, $\{\Omega_s\}$ is a sequence of domains contained in a bounded domain $\Omega$ of $\mathbb R^n$ ($n\geqslant 2$), and $\{h_s\}$ is a sequence of functions on $\mathbb R$, are announced.
Keywords: integral functional, variational problem, implicit pointwise constraint, minimizer, minimum value, $\Gamma$-convergence, variable domain.
Funding agency Grant number
Ministry of Education and Science of the Russian Federation 02.A03.21.0006
This work was supported by the Russian Academic Excellence Project (agreement no. 02.A03.21.0006 of August 27, 2013, between the Ministry of Education and Science of the Russian Federation and Ural Federal University).
Received: 29.05.2017
English version:
Functional Analysis and Its Applications, 2018, Volume 52, Issue 2, Pages 147–150
DOI: https://doi.org/10.1007/s10688-018-0221-8
Bibliographic databases:
Document Type: Article
UDC: 517.972
Language: Russian
Citation: A. A. Kovalevsky, “On the Convergence of Solutions of Variational Problems with Implicit Pointwise Constraints in Variable Domains”, Funktsional. Anal. i Prilozhen., 52:2 (2018), 82–85; Funct. Anal. Appl., 52:2 (2018), 147–150
Citation in format AMSBIB
\Bibitem{Kov18}
\by A.~A.~Kovalevsky
\paper On the Convergence of Solutions of Variational Problems with Implicit Pointwise Constraints in Variable Domains
\jour Funktsional. Anal. i Prilozhen.
\yr 2018
\vol 52
\issue 2
\pages 82--85
\mathnet{http://mi.mathnet.ru/faa3496}
\crossref{https://doi.org/10.4213/faa3496}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3799415}
\elib{https://elibrary.ru/item.asp?id=32837053}
\transl
\jour Funct. Anal. Appl.
\yr 2018
\vol 52
\issue 2
\pages 147--150
\crossref{https://doi.org/10.1007/s10688-018-0221-8}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000437825500008}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85049596142}
Linking options:
  • https://www.mathnet.ru/eng/faa3496
  • https://doi.org/10.4213/faa3496
  • https://www.mathnet.ru/eng/faa/v52/i2/p82
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Функциональный анализ и его приложения Functional Analysis and Its Applications
    Statistics & downloads:
    Abstract page:404
    Full-text PDF :44
    References:59
    First page:27
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024