Fundamentalnaya i Prikladnaya Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Journal history

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Fundam. Prikl. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Fundamentalnaya i Prikladnaya Matematika, 2006, Volume 12, Issue 4, Pages 99–112 (Mi fpm961)  

This article is cited in 5 scientific papers (total in 5 papers)

On the sets of boundedness of solutions for a class of degenerate nonlinear elliptic fourth-order equations with $L^1$-data

A. A. Kovalevskya, F. Nicolosib

a Institute of Applied Mathematics and Mechanics, Ukraine National Academy of Sciences
b Università degli Studi di Catania
Full-text PDF (169 kB) Citations (5)
References:
Abstract: In this article, we deal with a class of degenerate, nonlinear, elliptic fourth-order equations in divergence form with coefficients satisfying a strengthened ellipticity condition and right-hand sides of the class $L^1$ depending on the unknown function. We consider the Dirichlet problem for equations of the given class and prove the existence of solutions of this problem bounded on the sets where the behavior of the data of the problem and the weighted functions involved is sufficiently regular.
English version:
Journal of Mathematical Sciences (New York), 2008, Volume 150, Issue 5, Pages 2358–2368
DOI: https://doi.org/10.1007/s10958-008-0135-8
Bibliographic databases:
UDC: 517.9
Language: Russian
Citation: A. A. Kovalevsky, F. Nicolosi, “On the sets of boundedness of solutions for a class of degenerate nonlinear elliptic fourth-order equations with $L^1$-data”, Fundam. Prikl. Mat., 12:4 (2006), 99–112; J. Math. Sci., 150:5 (2008), 2358–2368
Citation in format AMSBIB
\Bibitem{KovNic06}
\by A.~A.~Kovalevsky, F.~Nicolosi
\paper On the sets of boundedness of solutions for a~class of degenerate nonlinear elliptic fourth-order equations with $L^1$-data
\jour Fundam. Prikl. Mat.
\yr 2006
\vol 12
\issue 4
\pages 99--112
\mathnet{http://mi.mathnet.ru/fpm961}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2314148}
\zmath{https://zbmath.org/?q=an:1151.35340}
\elib{https://elibrary.ru/item.asp?id=11143778}
\transl
\jour J. Math. Sci.
\yr 2008
\vol 150
\issue 5
\pages 2358--2368
\crossref{https://doi.org/10.1007/s10958-008-0135-8}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-42149144178}
Linking options:
  • https://www.mathnet.ru/eng/fpm961
  • https://www.mathnet.ru/eng/fpm/v12/i4/p99
  • This publication is cited in the following 5 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Фундаментальная и прикладная математика
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025