|
|
Publications in Math-Net.Ru |
Citations |
|
2024 |
1. |
A. V. Chernov, “On application of Gaussian kernels and Laplace functions combined with Kolmogorov's theorem for approximation of functions of several variables”, Izv. IMI UdGU, 63 (2024), 114–131 |
2. |
Andrey V. Chernov, “On solvability of a pursuit game with nonlinear dynamics in the Hilbert space”, Mat. Teor. Igr Pril., 16:1 (2024), 92–125 |
3. |
A. V. Chernov, “Investigation of conditions for preserving global solvability of operator equations by means of comparison systems in the form of functional-integral equations in $\mathbf{C}[0;T]$”, Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 34:1 (2024), 109–136 |
|
2023 |
4. |
A. V. Chernov, “On monotone approximation of piecewise continuous monotone functions with the help of translations and dilations of the Laplace integral”, Izv. IMI UdGU, 61 (2023), 187–205 |
1
|
5. |
Andrey V. Chernov, “Differential games in a Banach space without discrimination”, Mat. Teor. Igr Pril., 15:1 (2023), 90–127 |
6. |
A. V. Chernov, “On the existence of optimal control in the problem of optimizing the lowest coefficient of a semilinear evolutionary equation”, Zh. Vychisl. Mat. Mat. Fiz., 63:7 (2023), 1084–1099 ; Comput. Math. Math. Phys., 63:7 (2023), 1176–1190 |
1
|
|
2022 |
7. |
A. V. Chernov, “On explicit expression of the solution to the regularizing by Tikhonov optimization problem in terms of the regularization parameter in the finite-dimensional case”, Izv. IMI UdGU, 60 (2022), 90–110 |
8. |
A. V. Chernov, “On flexibility of constraints system under approximation of optimal control problems”, Izv. IMI UdGU, 59 (2022), 114–130 |
9. |
Andrey V. Chernov, “On Stackelberg equilibrium in the sense of program strategies in Volterra functional operator games”, Mat. Teor. Igr Pril., 14:2 (2022), 99–122 |
10. |
A. V. Chernov, “On totally global solvability of evolutionary Volterra equation of the second kind”, Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 32:4 (2022), 593–614 |
2
|
11. |
A. V. Chernov, “On totally global solvability of evolutionary equation with monotone nonlinear operator”, Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 32:1 (2022), 130–149 |
1
|
12. |
A. V. Chernov, “On uniform monotone approximation of continuous monotone functions with the help of translations and dilations of the Laplace integral”, Zh. Vychisl. Mat. Mat. Fiz., 62:4 (2022), 580–596 ; Comput. Math. Math. Phys., 62:4 (2022), 564–580 |
|
2021 |
13. |
A. V. Chernov, “Preservation of the global solvability of a first-kind operator equation with controlled additional nonlinearity”, Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 192 (2021), 131–141 |
14. |
Andrey V. Chernov, “On some general scheme of constructing iterative methods for searching the Nash equilibrium in concave games”, Mat. Teor. Igr Pril., 13:3 (2021), 75–121 |
15. |
A. V. Chernov, “On differentiation of functional in problem on parametric coefficient optimization in semilinear global electric circuit equation”, Ufimsk. Mat. Zh., 13:3 (2021), 155–177 ; Ufa Math. J., 13:3 (2021), 152–173 |
16. |
A. V. Chernov, “On totally global solvability of evolutionary equation with unbounded operator”, Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 31:2 (2021), 331–349 |
2
|
|
2020 |
17. |
Andrey V. Chernov, “Differential games in a Banach space on a fixed chain”, Mat. Teor. Igr Pril., 12:3 (2020), 89–118 |
3
|
18. |
A. V. Chernov, “On preservation of global solvability of controlled second kind operator equation”, Ufimsk. Mat. Zh., 12:1 (2020), 56–82 ; Ufa Math. J., 12:1 (2020), 56–81 |
19. |
A. V. Chernov, “On the uniqueness of solution to the inverse problem of the atmospheric electricity”, Russian Universities Reports. Mathematics, 25:129 (2020), 85–99 |
1
|
20. |
A. V. Chernov, “On totally global solvability of controlled second kind operator equation”, Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 30:1 (2020), 92–111 |
4
|
21. |
A. V. Chernov, “Gaussian functions combined with Kolmogorov's theorem as applied to approximation of functions of several variables”, Zh. Vychisl. Mat. Mat. Fiz., 60:5 (2020), 784–801 ; Comput. Math. Math. Phys., 60:5 (2020), 766–782 |
5
|
|
2019 |
22. |
A. V. Chernov, “On application of Gaussian functions to numerical solution of optimal control problems”, Avtomat. i Telemekh., 2019, no. 6, 51–69 ; Autom. Remote Control, 80:6 (2019), 1026–1040 |
6
|
23. |
Andrey V. Chernov, “On the problem of solving multimove games under time deficit”, Mat. Teor. Igr Pril., 11:2 (2019), 96–120 |
|
2018 |
24. |
A. V. Chernov, “On the total preservation of univalent global solvability for a first kind operator equation with controlled added nonlinearity”, Izv. Vyssh. Uchebn. Zaved. Mat., 2018, no. 11, 60–74 ; Russian Math. (Iz. VUZ), 62:11 (2018), 53–66 |
7
|
25. |
A. V. Chernov, “On differentiation of functionals of approximating problems in the frame of solution of free time optimal control problems by the sliding nodes method”, Tambov University Reports. Series: Natural and Technical Sciences, 23:124 (2018), 861–876 |
1
|
26. |
A. V. Chernov, “Majorant sign of the first order for totally global solvability of a controlled functional operator equation”, Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 28:4 (2018), 531–548 |
2
|
27. |
A. V. Chernov, “Preservation of the solvability of a semilinear global electric circuit equation”, Zh. Vychisl. Mat. Mat. Fiz., 58:12 (2018), 2095–2111 ; Comput. Math. Math. Phys., 58:12 (2018), 2018–2030 |
10
|
|
2017 |
28. |
A. V. Chernov, “JPEG-like method of control parametrization for numerical solution of the distributed optimization problems”, Avtomat. i Telemekh., 2017, no. 8, 145–163 ; Autom. Remote Control, 78:8 (2017), 1474–1488 |
1
|
29. |
A. V. Chernov, “On total preservation of solvability for a controlled Hammerstein type equation with non-isotone and non-majorized operator”, Izv. Vyssh. Uchebn. Zaved. Mat., 2017, no. 6, 83–94 ; Russian Math. (Iz. VUZ), 61:6 (2017), 72–81 |
7
|
30. |
Andrey V. Chernov, “On some approaches to searching the Nash equilibrium in concave games”, Mat. Teor. Igr Pril., 9:2 (2017), 62–104 |
1
|
31. |
A. V. Chernov, “On the application of Gaussian functions for discretization of optimal control problems”, Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 27:4 (2017), 558–575 |
7
|
32. |
A. V. Chernov, “On using Gaussian functions with varied parameters for approximation of functions of one variable on a finite segment”, Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 27:2 (2017), 267–282 |
5
|
|
2016 |
33. |
A. V. Chernov, “On the uniqueness of solution to the inverse problem of determination parameters in the senior coefficient
and the righthand side of an elliptic equation”, Dal'nevost. Mat. Zh., 16:1 (2016), 96–110 |
3
|
34. |
A. V. Chernov, “On the structure of a solution set of controlled initial-boundary value problems”, Izv. Vyssh. Uchebn. Zaved. Mat., 2016, no. 2, 75–86 ; Russian Math. (Iz. VUZ), 60:2 (2016), 62–71 |
2
|
35. |
A. V. Chernov, “Differentiation of a functional in the problem of parametric coefficient optimization in the global electric circuit equation”, Zh. Vychisl. Mat. Mat. Fiz., 56:9 (2016), 1586–1601 ; Comput. Math. Math. Phys., 56:9 (2016), 1565–1579 |
7
|
|
2015 |
36. |
A. V. Chernov, “On the analogue of Wintner's theorem for a controlled elliptic equation”, Izv. IMI UdGU, 2015, no. 2(46), 228–235 |
37. |
Andrey V. Chernov, “On existence of the Nash equilibrium in a differential game associated with elliptic equations: the monotone case”, Mat. Teor. Igr Pril., 7:3 (2015), 48–78 |
4
|
38. |
A. V. Chernov, “On piecewise constant approximation in distributed optimization problems”, Trudy Inst. Mat. i Mekh. UrO RAN, 21:1 (2015), 264–279 |
8
|
39. |
A. V. Chernov, “On the totally global solvability of a controlled Hammerstein type equation with a varied linear operator”, Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 25:2 (2015), 230–243 |
8
|
40. |
A. V. Chernov, “On the convergence of the conditional gradient method as applied to the optimization of an elliptic equation”, Zh. Vychisl. Mat. Mat. Fiz., 55:2 (2015), 213–228 ; Comput. Math. Math. Phys., 55:2 (2015), 212–226 |
1
|
|
2014 |
41. |
A. V. Chernov, “On convexity local conditions for attainable tubes of controlled distributed systems”, Izv. Vyssh. Uchebn. Zaved. Mat., 2014, no. 11, 72–86 ; Russian Math. (Iz. VUZ), 58:11 (2014), 60–73 |
3
|
42. |
Andrey V. Chernov, “On existence of $\varepsilon$-equilibrium in noncooperative $n$-person games associated with elliptic partial differential equations”, Mat. Teor. Igr Pril., 6:1 (2014), 91–115 |
2
|
43. |
A. V. Chernov, “On the smoothness of an approximated optimization problem for a Goursat–Darboux system on a varied domain”, Trudy Inst. Mat. i Mekh. UrO RAN, 20:1 (2014), 305–321 |
9
|
44. |
A. V. Chernov, “On total preservation of global solvability for a Goursat problem associated with a controlled semilinear pseudoparabolic equation”, Vladikavkaz. Mat. Zh., 16:3 (2014), 55–63 |
4
|
45. |
A. V. Chernov, “On applicability of control parametrization technique to solving distributed optimization problems”, Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 2014, no. 1, 102–117 |
6
|
|
2013 |
46. |
A. V. Chernov, “Uniformly continuous dependence of a solution to a controlled functional operator equation on a shift of control”, Izv. Vyssh. Uchebn. Zaved. Mat., 2013, no. 5, 36–50 ; Russian Math. (Iz. VUZ), 57:5 (2013), 29–41 |
1
|
47. |
Andrey V. Chernov, “On some approach to construction of $\varepsilon$-equilibrium in noncooperative $n$-person games associated with partial differential equations”, Mat. Teor. Igr Pril., 5:1 (2013), 104–123 |
4
|
48. |
A. V. Chernov, “A Generalization of Bihari's Lemma to the Case of Volterra Operators in Lebesgue Spaces”, Mat. Zametki, 94:5 (2013), 757–769 ; Math. Notes, 94:5 (2013), 703–714 |
3
|
49. |
A. V. Chernov, “On $\varepsilon$-equilibrium in noncooperative functional operator $n$-person games”, Trudy Inst. Mat. i Mekh. UrO RAN, 19:1 (2013), 316–328 |
4
|
50. |
A. V. Chernov, “On controllability of nonlinear distributed systems on a set of discretized controls”, Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 2013, no. 1, 83–98 |
8
|
51. |
A. V. Chernov, “Smooth finite-dimensional approximations of distributed optimization problems via control discretization”, Zh. Vychisl. Mat. Mat. Fiz., 53:12 (2013), 2029–2043 ; Comput. Math. Math. Phys., 53:12 (2013), 1839–1852 |
18
|
|
2012 |
52. |
A. V. Chernov, “To investigation of dependence of solution to controlled functional operator equation on a shift of control”, Izv. IMI UdGU, 2012, no. 1(39), 157–158 |
53. |
A. V. Chernov, “A majorant-minorant criterion for the total preservation of global solvability of a functional operator equation”, Izv. Vyssh. Uchebn. Zaved. Mat., 2012, no. 3, 62–73 ; Russian Math. (Iz. VUZ), 56:3 (2012), 55–65 |
33
|
54. |
Andrey V. Chernov, “On existence of $\varepsilon$-equilibrium in Volterra functional operator games without discrimination”, Mat. Teor. Igr Pril., 4:1 (2012), 74–92 |
5
|
55. |
A. V. Chernov, “On Volterra type generalization of monotonization method for nonlinear functional operator equations”, Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 2012, no. 2, 84–99 |
7
|
56. |
A. V. Chernov, “Sufficient conditions for the controllability of nonlinear distributed systems”, Zh. Vychisl. Mat. Mat. Fiz., 52:8 (2012), 1400–1414 ; Comput. Math. Math. Phys., 52:8 (2012), 1115–1127 |
21
|
|
2011 |
57. |
A. V. Chernov, “A majorant criterion for the total preservation of global solvability of controlled functional operator equation”, Izv. Vyssh. Uchebn. Zaved. Mat., 2011, no. 3, 95–107 ; Russian Math. (Iz. VUZ), 55:3 (2011), 85–95 |
44
|
58. |
Andrey V. Chernov, “On Volterra functional operator games on a given set”, Mat. Teor. Igr Pril., 3:1 (2011), 91–117 ; Autom. Remote Control, 75:4 (2014), 787–803 |
18
|
59. |
A. V. Chernov, “On the convergence of the conditional gradient method in distributed optimization problems”, Zh. Vychisl. Mat. Mat. Fiz., 51:9 (2011), 1616–1629 ; Comput. Math. Math. Phys., 51:9 (2011), 1510–1523 |
20
|
|
2010 |
60. |
A. V. Chernov, “О вольтерровых функционально-операторных играх”, Matem. Mod. Kraev. Zadachi, 2 (2010), 289–291 |
2
|
61. |
A. V. Chernov, “Pointwise Estimation of the Difference of the Solutions of a Controlled Functional Operator Equation in Lebesgue Spaces”, Mat. Zametki, 88:2 (2010), 288–302 ; Math. Notes, 88:2 (2010), 262–274 |
13
|
|
2006 |
62. |
A. V. Chernov, “О преодолении сингулярности распределенных систем управления”, Matem. Mod. Kraev. Zadachi, 2 (2006), 171–174 |
1
|
|
2005 |
63. |
A. V. Chernov, “О необходимых условиях оптимальности в задаче управления старшими коэффициентами системы гиперболических уравнений первого порядка”, Matem. Mod. Kraev. Zadachi, 2 (2005), 259–262 |
1
|
|
2004 |
64. |
A. V. Chernov, “К применению теоремы о неявной функции для обоснования градиентных методов в распределенных задачах оптимизации”, Matem. Mod. Kraev. Zadachi, 2 (2004), 265–268 |
|
2000 |
65. |
V. I. Sumin, A. V. Chernov, “On some criteria for the quasinilpotency of functional operators”, Izv. Vyssh. Uchebn. Zaved. Mat., 2000, no. 2, 77–80 ; Russian Math. (Iz. VUZ), 44:2 (2000), 75–78 |
6
|
|
1998 |
66. |
V. I. Sumin, A. V. Chernov, “Operators in the spaces of measurable functions: the Volterra property and quasinilpotency”, Differ. Uravn., 34:10 (1998), 1402–1411 ; Differ. Equ., 34:10 (1998), 1403–1411 |
31
|
|
Organisations |
|
|
|
|