Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Guidelines for authors

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. IMI UdGU:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, 2023, Volume 61, Pages 187–205
DOI: https://doi.org/10.35634/2226-3594-2023-61-10
(Mi iimi448)
 

This article is cited in 1 scientific paper (total in 1 paper)

MATHEMATICS

On monotone approximation of piecewise continuous monotone functions with the help of translations and dilations of the Laplace integral

A. V. Chernov

Nizhny Novgorod State University, pr. Gagarina, 23, Nizhny Novgorod, 603950, Russia
Full-text PDF (290 kB) Citations (1)
References:
Abstract: For piecewise continuous monotone functions defined on a bounded interval $[-b;b]$, a monotone smooth approximation $Q(x)$ of any prescribed accuracy in the metric of the space $\mathbf{C}(\Pi)$ with as small as desired measure of the difference $[-b;b]\setminus\Pi$, $\Pi\subset[-b;b]$, is constructed using translations and dilations of the Laplace function (integral). In fact, this extends to the case of piecewise continuous monotone functions the result (obtained by the author formerly) on arbitrarily exact in the metric of the space $\mathbf{C}[-b;b]$ monotone approximation of continuous monotone functions with the help of translations and dilations of the Laplace integral. Besides, we suggest a new way of approximation in the form of linear combination of translations and dilations of the Laplace integral. Finally, we give and discuss concrete numerical examples of using approximation ways under study for a piecewise constant (stepwise) monotone function and for a piecewise continuous monotone function. Here, we also compare the results obtained for two discussed ways of approximation.
Keywords: piecewise continuous monotone functions, uniform approximation, Laplace integral, Gaussian function, quadratic exponential.
Received: 10.03.2023
Accepted: 25.04.2023
Bibliographic databases:
Document Type: Article
UDC: 519.651.2
Language: Russian
Citation: A. V. Chernov, “On monotone approximation of piecewise continuous monotone functions with the help of translations and dilations of the Laplace integral”, Izv. IMI UdGU, 61 (2023), 187–205
Citation in format AMSBIB
\Bibitem{Che23}
\by A.~V.~Chernov
\paper On monotone approximation of piecewise continuous monotone functions with the help of translations and dilations of the Laplace integral
\jour Izv. IMI UdGU
\yr 2023
\vol 61
\pages 187--205
\mathnet{http://mi.mathnet.ru/iimi448}
\crossref{https://doi.org/10.35634/2226-3594-2023-61-10}
Linking options:
  • https://www.mathnet.ru/eng/iimi448
  • https://www.mathnet.ru/eng/iimi/v61/p187
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta
    Statistics & downloads:
    Abstract page:169
    Full-text PDF :72
    References:24
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024