Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2013, Volume 94, Issue 5, Pages 757–769
DOI: https://doi.org/10.4213/mzm8951
(Mi mzm8951)
 

This article is cited in 3 scientific papers (total in 3 papers)

A Generalization of Bihari's Lemma to the Case of Volterra Operators in Lebesgue Spaces

A. V. Chernov

Institute of Radio Engineering and Information Technologies, Nizhniy Novgorod State Technical University
Full-text PDF (569 kB) Citations (3)
References:
Abstract: For operators acting in the Lebesgue space $L_q(\Pi)$, $1<q<\infty$, an abstract analog of Bihari's lemma is stated and proved. We show that it can be used to derive a uniform pointwise estimate of the increment of the solution of a controlled functional-operator equation in the Lebesgue space. The procedure of reducing controlled initial boundary-value problems to this equation is illustrated by the Goursat–Darboux problem.
Keywords: Bihari's lemma, Lebesgue space, Volterra operator, controlled functional-operator equation, Goursat–Darboux problem, Gronwall's lemma, Volterra $\delta$-chain.
Received: 09.10.2010
English version:
Mathematical Notes, 2013, Volume 94, Issue 5, Pages 703–714
DOI: https://doi.org/10.1134/S0001434613110114
Bibliographic databases:
Document Type: Article
UDC: 517.988+517.977.56
Language: Russian
Citation: A. V. Chernov, “A Generalization of Bihari's Lemma to the Case of Volterra Operators in Lebesgue Spaces”, Mat. Zametki, 94:5 (2013), 757–769; Math. Notes, 94:5 (2013), 703–714
Citation in format AMSBIB
\Bibitem{Che13}
\by A.~V.~Chernov
\paper A Generalization of Bihari's Lemma to the Case of Volterra Operators in Lebesgue Spaces
\jour Mat. Zametki
\yr 2013
\vol 94
\issue 5
\pages 757--769
\mathnet{http://mi.mathnet.ru/mzm8951}
\crossref{https://doi.org/10.4213/mzm8951}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3227016}
\zmath{https://zbmath.org/?q=an:1285.47089}
\elib{https://elibrary.ru/item.asp?id=20731820}
\transl
\jour Math. Notes
\yr 2013
\vol 94
\issue 5
\pages 703--714
\crossref{https://doi.org/10.1134/S0001434613110114}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000329130000011}
\elib{https://elibrary.ru/item.asp?id=21904566}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84891333478}
Linking options:
  • https://www.mathnet.ru/eng/mzm8951
  • https://doi.org/10.4213/mzm8951
  • https://www.mathnet.ru/eng/mzm/v94/i5/p757
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:673
    Full-text PDF :330
    References:62
    First page:10
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024