Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki, 2015, Volume 25, Issue 2, Pages 230–243 (Mi vuu479)  

This article is cited in 8 scientific papers (total in 8 papers)

MATHEMATICS

On the totally global solvability of a controlled Hammerstein type equation with a varied linear operator

A. V. Chernovab

a Nizhni Novgorod State University, pr. Gagarina, 23, Nizhni Novgorod, 603950, Russia
b Nizhni Novgorod State Technical University, ul. Minina, 24, Nizhni Novgorod, 603950, Russia
Full-text PDF (303 kB) Citations (8)
References:
Abstract: Let $n,m,\ell,s\in\mathbb{N}$ be given numbers, $\Pi\subset\mathbb{R}^n$ be a measurable bounded set, $\mathcal{X}, \mathcal{Z}, \mathcal{U}$ be Banach ideal spaces of functions measurable on the set $\Pi$, $\mathcal{D}\subset\mathcal{U}^{s}$ be a convex set, $\mathcal{A}$ be some class of linear bounded operators $A:\mathcal{Z}^{m} \to\mathcal{X}^{\ell}$. We study the controlled Hammerstein type functional operator equation as follows
\begin{equation} x(t)=\theta(t)+ A\Bigl[ f(.,x(.),u(.)) \Bigr](t), \quad t\in \Pi , \quad x\in\mathcal{X}^{\ell}, \tag{1} \label{eq1} \end{equation}
where $\{ u,\theta,A\}\in \mathcal{D}\times \mathcal{X}^{\ell}\times \mathcal{A}$ is the set of controlled parameters; $f(t,x,v): \Pi\times\mathbb{R}^{\ell}\times\mathbb{R}^{s}\to\mathbb{R}^{m}$ is a given function measurable with respect to $t\in\Pi$, continuous with respect to $\{x,v\}\in\mathbb{R}^\ell\times\mathbb{R}^s$ and satisfying to certain natural hypotheses. Eq. \eqref{eq1} is a convenient form of representation of the broad class of controlled distributed systems. For the equation under study we prove a theorem concerning sufficient conditions of global solvability for all $u\in\mathcal{D}$, $A\in\mathcal{A}$ and $\theta$ from a pointwise bounded set. For the original equation we define some majorant and minorant inequalities obtaining them from Eq. \eqref{eq1} with the help of upper and lower estimates of the right-hand side. The theorem is proved providing global solvability of the majorant and minorant inequalities. As an application of obtained general results we prove a theorem concerning the total (with respect to the whole set of admissible controls) global solvability of the mixed boundary value problem for a system of hyperbolic equations of the first order with controlled higher coefficients.
Keywords: totally global solvability, functional operator equation of the Hammerstein type, pointwise estimate of solutions, system of hyperbolic equations of the first order with controlled higher coefficients.
Received: 29.03.2015
Bibliographic databases:
Document Type: Article
UDC: 517.957, 517.988, 517.977.56
MSC: 47J05, 47J35, 47N10
Language: Russian
Citation: A. V. Chernov, “On the totally global solvability of a controlled Hammerstein type equation with a varied linear operator”, Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 25:2 (2015), 230–243
Citation in format AMSBIB
\Bibitem{Che15}
\by A.~V.~Chernov
\paper On the totally global solvability of a controlled Hammerstein type equation with a varied linear operator
\jour Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki
\yr 2015
\vol 25
\issue 2
\pages 230--243
\mathnet{http://mi.mathnet.ru/vuu479}
\elib{https://elibrary.ru/item.asp?id=23681104}
Linking options:
  • https://www.mathnet.ru/eng/vuu479
  • https://www.mathnet.ru/eng/vuu/v25/i2/p230
  • This publication is cited in the following 8 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Вестник Удмуртского университета. Математика. Механика. Компьютерные науки
    Statistics & downloads:
    Abstract page:579
    Full-text PDF :162
    References:79
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024