Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. Vyssh. Uchebn. Zaved. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika, 2016, Number 2, Pages 75–86 (Mi ivm9084)  

This article is cited in 2 scientific papers (total in 2 papers)

On the structure of a solution set of controlled initial-boundary value problems

A. V. Chernovab

a Chair of Applied Mathematics, Nizhni Novgorod State Technical University, 24 Minin str., Nizhni Novgorod, 603950 Russia
b Chair of Mathematical Physics and Optimal Control, Nizhni Novgorod State University, 23 Gagarin ave., Nizhni Novgorod, 603950 Russia
Full-text PDF (248 kB) Citations (2)
References:
Abstract: For a controlled nonlinear functional-operator equation of the Hammerstein type describing a wide class of controlled initial-boundary value problems, we obtain simple sufficient conditions for the convexity, pointwise boundedness and precompactness of the set of solutions (the reachability tube) in the Lebesgue space. As concerns boundedness and precompactness, we mean certain conditions of the majorant type without Volterra type requirements which give also the total (with respect to the whole set of admissible controls) preservation of solvability of mentioned equation. In the capaсity of examples of reduction of a controlled initial-boundary (boundary) value problem to the equation under investigation and verification the proposed hypotheses for this equation, we consider the first initial-boundary value problem associated with a semilinear parabolic equation of the second order in a rather general form, and also the Dirichlet problem associated with a semilinear elliptic equation of the second order.
Keywords: reachability tube, convexity conditions, total preservation of solvability, functional-operator equation of the Hammerstein type, nonlinear distributed system, parabolic equation, elliptic equation.
Funding agency Grant number
Ministry of Education and Science of the Russian Federation 1727
02.B.49.21.0003
Received: 01.07.2014
English version:
Russian Mathematics (Izvestiya VUZ. Matematika), 2016, Volume 60, Issue 2, Pages 62–71
DOI: https://doi.org/10.3103/S1066369X16020109
Bibliographic databases:
Document Type: Article
UDC: 517.988
Language: Russian
Citation: A. V. Chernov, “On the structure of a solution set of controlled initial-boundary value problems”, Izv. Vyssh. Uchebn. Zaved. Mat., 2016, no. 2, 75–86; Russian Math. (Iz. VUZ), 60:2 (2016), 62–71
Citation in format AMSBIB
\Bibitem{Che16}
\by A.~V.~Chernov
\paper On the structure of a~solution set of controlled initial-boundary value problems
\jour Izv. Vyssh. Uchebn. Zaved. Mat.
\yr 2016
\issue 2
\pages 75--86
\mathnet{http://mi.mathnet.ru/ivm9084}
\transl
\jour Russian Math. (Iz. VUZ)
\yr 2016
\vol 60
\issue 2
\pages 62--71
\crossref{https://doi.org/10.3103/S1066369X16020109}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000409281900010}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84961377367}
Linking options:
  • https://www.mathnet.ru/eng/ivm9084
  • https://www.mathnet.ru/eng/ivm/y2016/i2/p75
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия высших учебных заведений. Математика Russian Mathematics (Izvestiya VUZ. Matematika)
    Statistics & downloads:
    Abstract page:470
    Full-text PDF :49
    References:61
    First page:6
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024