Processing math: 100%
Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2010, Volume 88, Issue 2, Pages 288–302
DOI: https://doi.org/10.4213/mzm3898
(Mi mzm3898)
 

This article is cited in 13 scientific papers (total in 13 papers)

Pointwise Estimation of the Difference of the Solutions of a Controlled Functional Operator Equation in Lebesgue Spaces

A. V. Chernov

Institute of Radio Engineering and Information Technologies, Nizhniy Novgorod State Technical University
References:
Abstract: For a functional operator equation in Lebesgue space, we prove a statement on the pointwise estimate of the modulus of the increment of its global (on a fixed set ΠRn) solution under the variation of the control function appearing in this equation. As an auxiliary statement, we prove a generalization of Gronwall's lemma to the case of a nonlinear operator acting in Lebesgue space. The approach used here is based on methods from the theory of stability of existence of global solutions to Volterra operator equations.
Keywords: functional operator equation, control function, initial boundary-value problem, Gronwall's lemma, Volterra operator equation, Lebesgue space, increment of a solution.
Received: 18.06.2007
Revised: 10.01.2010
English version:
Mathematical Notes, 2010, Volume 88, Issue 2, Pages 262–274
DOI: https://doi.org/10.1134/S0001434610070242
Bibliographic databases:
Document Type: Article
UDC: 517.988+517.977.56
Language: Russian
Citation: A. V. Chernov, “Pointwise Estimation of the Difference of the Solutions of a Controlled Functional Operator Equation in Lebesgue Spaces”, Mat. Zametki, 88:2 (2010), 288–302; Math. Notes, 88:2 (2010), 262–274
Citation in format AMSBIB
\Bibitem{Che10}
\by A.~V.~Chernov
\paper Pointwise Estimation of the Difference of the Solutions of a Controlled Functional Operator Equation in Lebesgue Spaces
\jour Mat. Zametki
\yr 2010
\vol 88
\issue 2
\pages 288--302
\mathnet{http://mi.mathnet.ru/mzm3898}
\crossref{https://doi.org/10.4213/mzm3898}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2867055}
\elib{https://elibrary.ru/item.asp?id=15333246}
\transl
\jour Math. Notes
\yr 2010
\vol 88
\issue 2
\pages 262--274
\crossref{https://doi.org/10.1134/S0001434610070242}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000284088200024}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-77956468625}
Linking options:
  • https://www.mathnet.ru/eng/mzm3898
  • https://doi.org/10.4213/mzm3898
  • https://www.mathnet.ru/eng/mzm/v88/i2/p288
  • This publication is cited in the following 13 articles:
    1. A. V. Chernov, “Mazhorantnyi priznak pervogo poryadka totalno globalnoi razreshimosti upravlyaemogo funktsionalno-operatornogo uravneniya”, Vestn. Udmurtsk. un-ta. Matem. Mekh. Kompyut. nauki, 28:4 (2018), 531–548  mathnet  crossref  elib
    2. A. V. Chernov, “On convexity local conditions for attainable tubes of controlled distributed systems”, Russian Math. (Iz. VUZ), 58:11 (2014), 60–73  mathnet  crossref
    3. A. V. Chernov, “Ob $\varepsilon$-ravnovesii v beskoalitsionnykh funktsionalno-operatornykh igrakh so mnogimi uchastnikami”, Tr. IMM UrO RAN, 19, no. 1, 2013, 316–328  mathnet  mathscinet  elib
    4. A. V. Chernov, “A Generalization of Bihari's Lemma to the Case of Volterra Operators in Lebesgue Spaces”, Math. Notes, 94:5 (2013), 703–714  mathnet  crossref  crossref  mathscinet  zmath  isi  elib  elib
    5. A. V. Chernov, “A majorant-minorant criterion for the total preservation of global solvability of a functional operator equation”, Russian Math. (Iz. VUZ), 56:3 (2012), 55–65  mathnet  crossref  mathscinet
    6. Chernov A.V., “O volterrovykh funktsionalno-operatornykh igrakh s nefiksirovannoi tsepochkoi”, Vestnik Nizhegorodskogo universiteta im. N.I. Lobachevskogo, 2012, no. 2-1, 142–148  elib
    7. A. V. Chernov, “K issledovaniyu zavisimosti resheniya upravlyaemogo funktsionalno-operatornogo uravneniya ot sdviga upravleniya”, Izv. IMI UdGU, 2012, no. 1(39), 157–158  mathnet
    8. A. V. Chernov, “Sufficient conditions for the controllability of nonlinear distributed systems”, Comput. Math. Math. Phys., 52:8 (2012), 1115–1127  mathnet  crossref  mathscinet  adsnasa  isi  elib  elib
    9. Chernov A.V., “O neotritsatelnosti resheniya pervoi kraevoi zadachi dlya parabolicheskogo uravneniya”, Vestnik nizhegorodskogo universiteta im. N.I. Lobachevskogo, 2012, 167–170  elib
    10. Andrey V. Chernov, “On Volterra functional operator games on a given set”, Autom. Remote Control, 75:4 (2014), 787–803  mathnet  crossref  isi  elib
    11. A. V. Chernov, “On the convergence of the conditional gradient method in distributed optimization problems”, Comput. Math. Math. Phys., 51:9 (2011), 1510–1523  mathnet  crossref  mathscinet  isi
    12. Chernov A.V., “O skhodimosti metoda prostoi iteratsii dlya resheniya nelineinykh funktsionalno-operatornykh uravnenii”, Vestnik Nizhegorodskogo universiteta im. N.I. Lobachevskogo, 2011, no. 4-1, 149–155  elib
    13. Chernov A.V., “O totalnom sokhranenii globalnoi razreshimosti upravlyaemykh nachalno-kraevykh zadach”, Vestnik Tambovskogo universiteta. Seriya: Estestvennye i tekhnicheskie nauki, 16:4 (2011), 1219–1221  elib
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:632
    Full-text PDF :190
    References:74
    First page:4
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025