Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki, 2013, Volume 53, Number 12, Pages 2029–2043
DOI: https://doi.org/10.7868/S0044466913120053
(Mi zvmmf9960)
 

This article is cited in 18 scientific papers (total in 18 papers)

Smooth finite-dimensional approximations of distributed optimization problems via control discretization

A. V. Chernovab

a Nizhni Novgorod State University, pr. Gagarina 23, Nizhni Novgorod, 603950, Russia
b Nizhni Novgorod State Technical University, ul. Minina 24, Nizhni Novgorod, 603950, Russia
References:
Abstract: Approximating finite-dimensional mathematical programming problems are studied that arise from piecewise constant discretization of controls in the optimization of distributed systems of a fairly broad class. The smoothness of the approximating problems is established. Gradient formulas are derived that make use of the analytical solution of the original control system and its adjoint, thus providing an opportunity for algorithmic separation of numerical optimization and the task of solving a controlled initial-boundary value problem. The approximating problems are proved to converge to the original optimization problem with respect to the functional as the discretization is refined. The application of the approach to optimization problems is illustrated by solving the semilinear wave equation controlled by applying an integral criterion. The results of numerical experiments are analyzed.
Key words: optimization of distributed parameter systems, differentiation of a functional, piecewise constant approximation of control, control parametrization technique, gradient methods.
Received: 28.11.2012
Revised: 17.06.2013
English version:
Computational Mathematics and Mathematical Physics, 2013, Volume 53, Issue 12, Pages 1839–1852
DOI: https://doi.org/10.1134/S096554251312004X
Bibliographic databases:
Document Type: Article
UDC: 519.626
Language: Russian
Citation: A. V. Chernov, “Smooth finite-dimensional approximations of distributed optimization problems via control discretization”, Zh. Vychisl. Mat. Mat. Fiz., 53:12 (2013), 2029–2043; Comput. Math. Math. Phys., 53:12 (2013), 1839–1852
Citation in format AMSBIB
\Bibitem{Che13}
\by A.~V.~Chernov
\paper Smooth finite-dimensional approximations of distributed optimization problems via control discretization
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2013
\vol 53
\issue 12
\pages 2029--2043
\mathnet{http://mi.mathnet.ru/zvmmf9960}
\crossref{https://doi.org/10.7868/S0044466913120053}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3146571}
\elib{https://elibrary.ru/item.asp?id=20740319}
\transl
\jour Comput. Math. Math. Phys.
\yr 2013
\vol 53
\issue 12
\pages 1839--1852
\crossref{https://doi.org/10.1134/S096554251312004X}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000329101600007}
\elib{https://elibrary.ru/item.asp?id=21914191}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84897808447}
Linking options:
  • https://www.mathnet.ru/eng/zvmmf9960
  • https://www.mathnet.ru/eng/zvmmf/v53/i12/p2029
  • This publication is cited in the following 18 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Журнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024