|
|
Publications in Math-Net.Ru |
Citations |
|
2021 |
1. |
V. A. Belonogov, “Finite groups with four conjugacy classes of maximal subgroups. III”, Trudy Inst. Mat. i Mekh. UrO RAN, 27:1 (2021), 5–18 |
|
2018 |
2. |
V. A. Belonogov, “The finite groups with exactly four conjugate classes of maximal subgroups. II”, Sib. Èlektron. Mat. Izv., 15 (2018), 86–91 |
1
|
|
2017 |
3. |
V. A. Belonogov, “Finite simple groups with four conjugacy classes of maximal subgroups. I”, Trudy Inst. Mat. i Mekh. UrO RAN, 23:4 (2017), 52–62 |
2
|
|
2016 |
4. |
V. A. Belonogov, “A condition for a finite group to be a Schmidt group”, Trudy Inst. Mat. i Mekh. UrO RAN, 22:4 (2016), 81–86 |
5. |
V. A. Belonogov, “Finite simple groups in which all maximal subgroups are $\pi$-closed. II”, Trudy Inst. Mat. i Mekh. UrO RAN, 22:3 (2016), 12–22 |
|
2015 |
6. |
V. A. Belonogov, “On semiproportional columns in the character tables of the groups $\mathrm{Sp}_4(q)$ and $\mathrm{Sp}_4(q)$ for odd $q$”, Trudy Inst. Mat. i Mekh. UrO RAN, 21:3 (2015), 46–53 |
7. |
V. A. Belonogov, “Finite groups in which all maximal subgroups are $\pi$-closed. I”, Trudy Inst. Mat. i Mekh. UrO RAN, 21:1 (2015), 25–34 ; Proc. Steklov Inst. Math. (Suppl.), 293, suppl. 1 (2016), 22–31 |
1
|
|
2014 |
8. |
V. A. Belonogov, “Finite groups in which all $2$-maximal subgroups are $\pi$-decomposable”, Trudy Inst. Mat. i Mekh. UrO RAN, 20:2 (2014), 29–43 ; Proc. Steklov Inst. Math. (Suppl.), 289, suppl. 1 (2015), 26–41 |
11
|
|
2013 |
9. |
V. A. Belonogov, “On control of the prime spectrum of the finite simple groups”, Trudy Inst. Mat. i Mekh. UrO RAN, 19:3 (2013), 29–44 ; Proc. Steklov Inst. Math. (Suppl.), 285, suppl. 1 (2014), S25–S4110 |
5
|
10. |
V. A. Belonogov, “Semiproportional irreducible characters of the groups $\mathrm{Sp}_4(q)$ and $\mathrm{PSp}_4(q)$ for odd $q$”, Trudy Inst. Mat. i Mekh. UrO RAN, 19:1 (2013), 25–40 |
1
|
|
2012 |
11. |
V. A. Belonogov, “On the conjecture about semiproportional characters in the groups $\mathrm{Sp}_4(q)$”, Trudy Inst. Mat. i Mekh. UrO RAN, 18:3 (2012), 30–46 ; Proc. Steklov Inst. Math. (Suppl.), 283, suppl. 1 (2013), 6–23 |
2
|
|
2011 |
12. |
V. A. Belonogov, “Small interactions in the groups $\mathrm{Sp}_4(q)$ for even $q$”, Trudy Inst. Mat. i Mekh. UrO RAN, 17:4 (2011), 19–37 ; Proc. Steklov Inst. Math. (Suppl.), 279, suppl. 1 (2012), 23–42 |
3
|
13. |
V. A. Belonogov, “On irreducible characters of the group $S_n$ that are semiproportional on $A_n$ or $S_n\setminus A_n$. VII”, Trudy Inst. Mat. i Mekh. UrO RAN, 17:1 (2011), 3–16 |
1
|
|
2010 |
14. |
V. A. Belonogov, “On irreducible characters of the group $S_n$ that are semiproportional on $A_n$ or $S_n\setminus A_n$. VI”, Trudy Inst. Mat. i Mekh. UrO RAN, 16:3 (2010), 25–44 ; Proc. Steklov Inst. Math. (Suppl.), 272, suppl. 1 (2011), S14–S35 |
1
|
15. |
V. A. Belonogov, “On irreducible characters of the group $S_n$ that are semiproportional on $A_n$ or $S_n\setminus A_n$. V”, Trudy Inst. Mat. i Mekh. UrO RAN, 16:2 (2010), 13–34 |
2
|
|
2009 |
16. |
V. A. Belonogov, “Finite groups with a $D$-block of cardinality 3”, Fundam. Prikl. Mat., 15:2 (2009), 23–33 ; J. Math. Sci., 167:6 (2010), 741–748 |
17. |
V. A. Belonogov, “On irreducible characters of the group $S_n$ that are semiproportional on $A_n$ or $S_n\setminus A_n$. IV.”, Trudy Inst. Mat. i Mekh. UrO RAN, 15:2 (2009), 12–33 ; Proc. Steklov Inst. Math. (Suppl.), 267, suppl. 1 (2009), S10–S32 |
3
|
|
2008 |
18. |
V. A. Belonogov, “Irreducible characters of the group $S_n$ that are semiproportional on $A_n$”, Algebra Logika, 47:2 (2008), 135–156 ; Algebra and Logic, 47:2 (2008), 77–90 |
10
|
19. |
V. A. Belonogov, “The young diagrams of a pair of irreducible characters of $S_n$ with the same zero set on $S^\varepsilon_n$”, Sibirsk. Mat. Zh., 49:5 (2008), 992–1006 ; Siberian Math. J., 49:5 (2008), 784–795 |
5
|
20. |
V. A. Belonogov, “On irreducible characters of the group $S_n$ that are semiproportional on $A_n$ or $S_n\setminus A_n$. III”, Trudy Inst. Mat. i Mekh. UrO RAN, 14:4 (2008), 12–30 |
5
|
21. |
V. A. Belonogov, “On irreducible characters of the group $S_n$ that are semiproportional on $A_n$ or $S_n\setminus A_n$. II”, Trudy Inst. Mat. i Mekh. UrO RAN, 14:3 (2008), 58–68 ; Proc. Steklov Inst. Math. (Suppl.), 264, suppl. 1 (2009), S60–S71 |
6
|
22. |
V. A. Belonogov, “On irreducible characters of the group $S_n$ that are semiproportional on $A_n$ or $S_n\setminus A_n$. I”, Trudy Inst. Mat. i Mekh. UrO RAN, 14:2 (2008), 143–163 ; Proc. Steklov Inst. Math. (Suppl.), 263, suppl. 2 (2008), S150–S171 |
7
|
|
2007 |
23. |
V. A. Belonogov, “Irreducible characters with equal roots in the groups $S_n$ and $A_n$”, Algebra Logika, 46:1 (2007), 3–25 ; Algebra and Logic, 46:1 (2007), 1–15 |
11
|
24. |
V. A. Belonogov, “Young diagrams without hooks of length 4 and characters of the group $S_n$”, Trudy Inst. Mat. i Mekh. UrO RAN, 13:3 (2007), 30–40 ; Proc. Steklov Inst. Math. (Suppl.), 261, suppl. 1 (2008), S24–S35 |
7
|
25. |
V. A. Belonogov, “Certain pairs of irreducible characters of the groups $S_n$”, Trudy Inst. Mat. i Mekh. UrO RAN, 13:2 (2007), 13–32 ; Proc. Steklov Inst. Math. (Suppl.), 259, suppl. 2 (2007), S12–S34 |
10
|
26. |
V. A. Belonogov, “Certain pairs of irreducible characters of the groups $S_n$ and $A_n$”, Trudy Inst. Mat. i Mekh. UrO RAN, 13:1 (2007), 11–43 ; Proc. Steklov Inst. Math. (Suppl.), 257, suppl. 1 (2007), S10–S46 |
12
|
|
2005 |
27. |
V. A. Belonogov, “Zeros in Tables of Characters for the Groups $S_n$ and $A_n$. II”, Algebra Logika, 44:6 (2005), 643–663 ; Algebra and Logic, 44:6 (2005), 357–369 |
7
|
28. |
V. A. Belonogov, “Zeros in tables of characters for the groups $S_n$ and $A_n$”, Algebra Logika, 44:1 (2005), 24–43 ; Algebra and Logic, 44:1 (2005), 13–24 |
8
|
29. |
V. A. Belonogov, “On the semiproportional character conjecture”, Sibirsk. Mat. Zh., 46:2 (2005), 299–314 ; Siberian Math. J., 46:2 (2005), 233–245 |
9
|
|
2004 |
30. |
V. A. Belonogov, “On the irreducible characters of the groups $S_n$ and $A_n$”, Sibirsk. Mat. Zh., 45:5 (2004), 977–994 ; Siberian Math. J., 45:5 (2004), 806–820 |
19
|
|
2002 |
31. |
V. A. Belonogov, “Recovering an Erased Row or Column in a Table of Characters for a Finite Group”, Algebra Logika, 41:3 (2002), 259–275 ; Algebra and Logic, 41:3 (2002), 141–151 |
2
|
|
2001 |
32. |
V. A. Belonogov, “Minimality of an active fragment of the character table of a finite group”, Sibirsk. Mat. Zh., 42:5 (2001), 992–997 ; Siberian Math. J., 42:5 (2001), 828–832 |
33. |
V. A. Belonogov, “Interactions and active fragments of the character table of a finite group”, Trudy Inst. Mat. i Mekh. UrO RAN, 7:2 (2001), 34–54 ; Proc. Steklov Inst. Math. (Suppl.), 2001no. , suppl. 2, S33–S52 |
1
|
|
2000 |
34. |
V. A. Belonogov, “A property of the character table for a finite group”, Algebra Logika, 39:3 (2000), 273–279 ; Algebra and Logic, 39:3 (2000), 155–159 |
2
|
|
1998 |
35. |
V. A. Belonogov, “Small interactions in the groups ${\rm SL}_3(q)$, ${\rm SU}_3(q)$, ${\rm PSL}_3(q)$ and ${\rm PSU}_3(q)$”, Trudy Inst. Mat. i Mekh. UrO RAN, 5 (1998), 3–27 |
10
|
|
1996 |
36. |
V. A. Belonogov, “Small interactions in the groups $\mathrm{GL}_3(q)$, $\mathrm{GU}_3(q)$, $\mathrm{PGL}_3(q)$, $\mathrm{GLU}_3(q)$”, Trudy Inst. Mat. i Mekh. UrO RAN, 4 (1996), 17–47 |
9
|
|
1995 |
37. |
V. A. Belonogov, “Criteria for nonsimplicity of a finite group in the language of characters. II”, Trudy Inst. Mat. i Mekh. UrO RAN, 3 (1995), 3–18 |
|
1992 |
38. |
V. A. Belonogov, “On small interactions in finite groups”, Trudy Inst. Mat. i Mekh. UrO RAN, 2 (1992), 3–18 |
12
|
39. |
V. A. Belonogov, “A new method of calculation of $p$-blocks”, Trudy Inst. Mat. i Mekh. UrO RAN, 1 (1992), 3–12 |
1
|
|
1986 |
40. |
V. A. Belonogov, “Finite groups with three classes of maximal subgroups”, Mat. Sb. (N.S.), 131(173):2(10) (1986), 225–239 ; Math. USSR-Sb., 59:1 (1988), 223–236 |
13
|
|
1982 |
41. |
V. A. Belonogov, “Criteria for nonsimplicity of a finite group in the language
of characters”, Algebra Logika, 21:4 (1982), 386–401 |
1
|
|
1976 |
42. |
V. A. Belonogov, “Normal complements and conjugacy of involutions in a finite group”, Algebra Logika, 15:1 (1976), 22–38 |
|
1973 |
43. |
V. A. Belonogov, “Characterization of some finite simple groups by biprimaty subgroups. II”, Izv. Akad. Nauk SSSR Ser. Mat., 37:5 (1973), 988–1009 ; Math. USSR-Izv., 7:5 (1973), 990–1010 |
44. |
V. A. Belonogov, “Finite groups with biprimary subgroups of a definite form”, Mat. Zametki, 14:6 (1973), 853–857 ; Math. Notes, 14:6 (1973), 1049–1051 |
1
|
45. |
V. A. Belonogov, “Characterization of Ree-type groups by doubly primary subgroups”, Mat. Zametki, 13:2 (1973), 317–324 ; Math. Notes, 13:2 (1973), 191–195 |
|
1972 |
46. |
V. A. Belonogov, “Finite groups with $2$-decomposablecentralizers of involutions”, Sibirsk. Mat. Zh., 13:4 (1972), 761–766 ; Siberian Math. J., 13:4 (1972), 525–528 |
|
1971 |
47. |
V. A. Belonogov, “A characterization of certain finite simple groups by biprimary
subgroups”, Algebra Logika, 10:6 (1971), 603–619 |
1
|
48. |
V. A. Belonogov, “Characterization of some finite simple groups”, Izv. Akad. Nauk SSSR Ser. Mat., 35:4 (1971), 789–799 ; Math. USSR-Izv., 5:4 (1971), 805–814 |
1
|
|
1970 |
49. |
V. A. Belonogov, “Characterization of the simple groups $PSL(2,2^n)$ and $Sz(q)$ by biprimary subgroups”, Mat. Zametki, 8:1 (1970), 85–93 ; Math. Notes, 8:1 (1970), 518–522 |
1
|
|
1969 |
50. |
V. A. Belonogov, “Finite groups with an abundance of $(\pi,\pi')$-decomposable subgroups”, Sibirsk. Mat. Zh., 10:3 (1969), 494–506 ; Siberian Math. J., 10:3 (1969), 354–362 |
3
|
|
1968 |
51. |
V. A. Belonogov, “Finite solvable groups with nilpotent 2-maximal subgroups”, Mat. Zametki, 3:1 (1968), 21–32 ; Math. Notes, 3:1 (1968), 15–21 |
10
|
|
1966 |
52. |
V. A. Belonogov, I. E. Maizlin, “Approximate solution of the problem of minimizing of development cost”, Uspekhi Mat. Nauk, 21:1(127) (1966), 176–177 |
53. |
V. A. Belonogov, “A solvability criterion for groups of even order”, Sibirsk. Mat. Zh., 7:2 (1966), 458–459 |
3
|
|
1965 |
54. |
V. A. Belonogov, “Finite groups with a pair of non-conjugate nilpotent maximal subgroups”, Dokl. Akad. Nauk SSSR, 161:6 (1965), 1255–1256 |
3
|
|
1964 |
55. |
V. A. Belonogov, “Finite groups with a single class of non-nilpotent maximal subgroups”, Sibirsk. Mat. Zh., 5:5 (1964), 987–995 |
3
|
|
1962 |
56. |
V. A. Belonogov, “On maximal subgroups. II”, Izv. Vyssh. Uchebn. Zaved. Mat., 1962, no. 5, 3–11 |
57. |
V. A. Belonogov, “On maximal subgroups. I”, Izv. Vyssh. Uchebn. Zaved. Mat., 1962, no. 4, 13–18 |
|
|
|
1969 |
58. |
V. A. Belonogov, A. I. Starostin, “Third All-Union Symposium on Group Theory”, Uspekhi Mat. Nauk, 24:4(148) (1969), 221–224 |
|
Organisations |
|
|
|
|