Loading [MathJax]/jax/output/CommonHTML/jax.js
Trudy Instituta Matematiki i Mekhaniki UrO RAN
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Inst. Mat. i Mekh. UrO RAN:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2014, Volume 20, Number 2, Pages 29–43 (Mi timm1056)  

This article is cited in 11 scientific papers (total in 11 papers)

Finite groups in which all 2-maximal subgroups are π-decomposable

V. A. Belonogov

Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences
References:
Abstract: Let π is a set of prime numbers. A very broad generalization of notion of nilpotent group is the notion of π-decomposable group, i.e. the direct product of π-group and π-group. In the paper, the description of the finite non-π-decomposable groups in which all 2-maximal subgroups are π-decomposable is obtained. The proof used the author's results connected with the notion of control the prime spectrum of finite simple groups. The finite nonnilpotent groups in which all 2-maximal subgroups are nilpotent was studied by Z. Janko in 1962 in case of nonsolvable groups and the author in 1968 in case of solvable groups.
Keywords: finite group, simple group, π-decomposable group, maximal subgroup, control of prime spectrum of group.
Received: 10.12.2013
English version:
Proceedings of the Steklov Institute of Mathematics (Supplementary issues), 2015, Volume 289, Issue 1, Pages 26–41
DOI: https://doi.org/10.1134/S008154381505003X
Bibliographic databases:
Document Type: Article
UDC: 512.54
Language: Russian
Citation: V. A. Belonogov, “Finite groups in which all 2-maximal subgroups are π-decomposable”, Trudy Inst. Mat. i Mekh. UrO RAN, 20, no. 2, 2014, 29–43; Proc. Steklov Inst. Math. (Suppl.), 289, suppl. 1 (2015), 26–41
Citation in format AMSBIB
\Bibitem{Bel14}
\by V.~A.~Belonogov
\paper Finite groups in which all $2$-maximal subgroups are $\pi$-decomposable
\serial Trudy Inst. Mat. i Mekh. UrO RAN
\yr 2014
\vol 20
\issue 2
\pages 29--43
\mathnet{http://mi.mathnet.ru/timm1056}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3362576}
\elib{https://elibrary.ru/item.asp?id=21585622}
\transl
\jour Proc. Steklov Inst. Math. (Suppl.)
\yr 2015
\vol 289
\issue , suppl. 1
\pages 26--41
\crossref{https://doi.org/10.1134/S008154381505003X}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000356931500003}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84932605000}
Linking options:
  • https://www.mathnet.ru/eng/timm1056
  • https://www.mathnet.ru/eng/timm/v20/i2/p29
  • This publication is cited in the following 11 articles:
    1. Kh. Li, Ch. Van, I. N. Safonova, A. N. Skiba, “Konechnye gruppy s $\sigma$-abnormalnymi podgruppami Shmidta”, Sib. matem. zhurn., 64:3 (2023), 585–597  mathnet  crossref
    2. H. Li, Zh. Wang, I. N. Safonova, A. N. Skiba, “Finite Groups with $ \sigma $-Abnormal Schmidt Subgroups”, Sib Math J, 64:3 (2023), 629  crossref
    3. V. N. Rizhik, I. N. Safonova, A. N. Skiba, “On the $\mathfrak{F}$-Norm of a Finite Group”, Proc. Steklov Inst. Math. (Suppl.), 317, suppl. 1 (2022), S136–S141  mathnet  crossref  crossref  isi  elib
    4. Zhigang Wang, Jin Guo, Inna N. Safonova, Alexander N. Skiba, “A Generalization of $\sigma $-Permutability”, Commun. Math. Stat., 10:3 (2022), 565  crossref
    5. Viktoria S. Zakrevskaya, “Finite groups with generalized subnormal and generalized permutable subgroups”, Asian-European J. Math., 15:01 (2022)  crossref
    6. Hu B., Huang J., Skiba A.N., “On the SIGMA-Nilpotent Norm and the SIGMA-Nilpotent Length of a Finite Group”, Glasg. Math. J., 63:1 (2021), PII S0017089520000051, 121–132  crossref  mathscinet  isi  scopus
    7. Hu B., Huang J., Skiba A.N., “Finite Groups With SIGMA-Frobenius Condition For Non-Normal SIGMA-Primary Subgroups”, J. Algebra. Appl., 19:3 (2020), 2050047  crossref  mathscinet  zmath  isi  scopus
    8. Zh. Chi, A. N. Skiba, “On semi-sigma-nilpotent finite groups”, J. Algebra. Appl., 18:10 (2019), 1950200  crossref  mathscinet  zmath  isi  scopus
    9. B. Hu, J. Huang, “On finite groups with generalized sigma-subnormal Schmidt subgroups”, Commun. Algebr., 46:7 (2018), 3127–3134  crossref  mathscinet  zmath  isi  scopus
    10. V. A. Kovaleva, “Konechnye gruppy s zadannymi obobschenno maksimalnymi podgruppami (obzor). II. Ot maksimalnykh tsepei k maksimalnym param”, PFMT, 2017, no. 2(31), 55–65  mathnet
    11. V. A. Belonogov, “Finite groups in which all maximal subgroups are $\pi$-closed. I”, Proc. Steklov Inst. Math. (Suppl.), 293, suppl. 1 (2016), 22–31  mathnet  crossref  mathscinet  isi  elib
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Trudy Instituta Matematiki i Mekhaniki UrO RAN
    Statistics & downloads:
    Abstract page:412
    Full-text PDF :101
    References:82
    First page:11
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025