Abstract:
The set π(G) of all prime divisors of the order of a finite group G is often called its prime spectrum. It is proved that every finite simple nonabelian group G has sections H1,…,Hm of some special form such that π(H1)∪⋯∪π(Hm)=π(G) and m⩽5, in the case when G is an alternating or classical simple group, in addition, m⩽2. Moreover, in any case, it is possible to choose the sections Hi so that each of them is a simple nonabelian group, a Frobenius group, or (in one case) a dihedral group. If the above equality is realized for a finite group G, then we say that the set {H1,…,Hm} controls the prime spectrum of G. We also study some parameter c(G) of finite groups G related to the notion of control.
Keywords:
finite group, simple group, prime spectrum, maximal subgroup, section of a group.
Citation:
V. A. Belonogov, “On control of the prime spectrum of the finite simple groups”, Trudy Inst. Mat. i Mekh. UrO RAN, 19, no. 3, 2013, 29–44; Proc. Steklov Inst. Math. (Suppl.), 285, suppl. 1 (2014), S25–S4110
\Bibitem{Bel13}
\by V.~A.~Belonogov
\paper On control of the prime spectrum of the finite simple groups
\serial Trudy Inst. Mat. i Mekh. UrO RAN
\yr 2013
\vol 19
\issue 3
\pages 29--44
\mathnet{http://mi.mathnet.ru/timm961}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3408358}
\elib{https://elibrary.ru/item.asp?id=20234970}
\transl
\jour Proc. Steklov Inst. Math. (Suppl.)
\yr 2014
\vol 285
\issue , suppl. 1
\pages S25--S4110
\crossref{https://doi.org/10.1134/S0081543814050046}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000338337200003}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84903313263}
Linking options:
https://www.mathnet.ru/eng/timm961
https://www.mathnet.ru/eng/timm/v19/i3/p29
This publication is cited in the following 5 articles:
Chi Zhang, Wenbin Guo, Natalia V. Maslova, Danila O. Revin, “On Prime Spectrum of Maximal Subgroups in Finite Groups”, Algebra Colloq., 25:04 (2018), 579
V. A. Belonogov, “Konechnye gruppy, vse maksimalnye podgruppy kotorykh π-zamknuty. II”, Tr. IMM UrO RAN, 22, no. 3, 2016, 12–22
V. A. Belonogov, “Uslovie dlya konechnoi gruppy byt gruppoi Shmidta”, Tr. IMM UrO RAN, 22, no. 4, 2016, 81–86
V. A. Belonogov, “Finite groups in which all maximal subgroups are π-closed. I”, Proc. Steklov Inst. Math. (Suppl.), 293, suppl. 1 (2016), 22–31
V. A. Belonogov, “Finite groups in which all 2-maximal subgroups are π-decomposable”, Proc. Steklov Inst. Math. (Suppl.), 289, suppl. 1 (2015), 26–41