Trudy Instituta Matematiki i Mekhaniki UrO RAN
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Inst. Mat. i Mekh. UrO RAN:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2015, Volume 21, Number 1, Pages 25–34 (Mi timm1139)  

This article is cited in 1 scientific paper (total in 1 paper)

Finite groups in which all maximal subgroups are $\pi$-closed. I

V. A. Belonogov

Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences, Ekaterinburg
Full-text PDF (189 kB) Citations (1)
References:
Abstract: Finite simple nonabelian groups $G$ that are not $\pi$-closed for some set of primes $\pi$ but have $\pi$-closed maximal subgroups (property $(*)$ for $(G,\pi)$) are studied. We give a list $\mathcal{L}$ of finite simple groups that contains any group $G$ with the above property (for some $\pi$). It is proved that $2\not\in\pi$ for any pair $(G,\pi)$ with property $(*)$ (Theorem 1). In addition, we specify for any sporadic simple group $G$ from $\mathcal{L}$ all sets of primes $\pi$ such that the pair $(G,\pi)$ has property $(*)$ (Theorem 2). The proof uses the author's results on the control of prime spectra of finite simple groups.
Keywords: finite group; simple group; $\pi$-closed group; maximal subgroup; control of prime spectrum of a group.
Received: 01.09.2014
English version:
Proceedings of the Steklov Institute of Mathematics (Supplementary issues), 2016, Volume 293, Issue 1, Pages 22–31
DOI: https://doi.org/10.1134/S0081543816050035
Bibliographic databases:
Document Type: Article
UDC: 512.54
Language: Russian
Citation: V. A. Belonogov, “Finite groups in which all maximal subgroups are $\pi$-closed. I”, Trudy Inst. Mat. i Mekh. UrO RAN, 21, no. 1, 2015, 25–34; Proc. Steklov Inst. Math. (Suppl.), 293, suppl. 1 (2016), 22–31
Citation in format AMSBIB
\Bibitem{Bel15}
\by V.~A.~Belonogov
\paper Finite groups in which all maximal subgroups are $\pi$-closed. I
\serial Trudy Inst. Mat. i Mekh. UrO RAN
\yr 2015
\vol 21
\issue 1
\pages 25--34
\mathnet{http://mi.mathnet.ru/timm1139}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3379600}
\elib{https://elibrary.ru/item.asp?id=23137968}
\transl
\jour Proc. Steklov Inst. Math. (Suppl.)
\yr 2016
\vol 293
\issue , suppl. 1
\pages 22--31
\crossref{https://doi.org/10.1134/S0081543816050035}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000380005200003}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84978499629}
Linking options:
  • https://www.mathnet.ru/eng/timm1139
  • https://www.mathnet.ru/eng/timm/v21/i1/p25
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Trudy Instituta Matematiki i Mekhaniki UrO RAN
    Statistics & downloads:
    Abstract page:347
    Full-text PDF :84
    References:74
    First page:9
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024